Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Potential implications of CYP3A4, CYP3A5 and MDR-1 genetic variants on the efficacy of Lopinavir/Ritonavir (LPV/r) monotherapy in HIV-1 patients 
Journal of the International AIDS Society  2014;17(4Suppl 3):19589.
Several genetic single nucleotide polymorphisms (SNPs) in biotransformation enzymes (CYP3A4, CYP3A5) or transporter proteins (multidrug resistance MDR1 gene product, P-gp) are involved in PI metabolism so that PI pharmacokinetics is characterized by a large inter-individual variability. The aim of this study was: (i) to develop an in-house PCR/direct sequencing, based on DNA purification of full-length CYP3A4 and CYP3A5 genes (SNPs) and MDR1 C3435T variant; (ii) to investigate association of CYP3A4 and CYP3A5 reported or unreported genetic polymorphisms and MDR1-C3435T (CC homozygote, CT heterozygote, TT homozygote) with clinical outcome of HIV-1 infected subjects treated with PI.
Overall, 39 HIV-1 infected patients receiving boosted Lopinavir (LPV/r) monotherapy after virological suppression were genotyped and analyzed through PCR and direct sequencing of full-length CYP3A4 and CYP3A5 gene sequences [1] and MDR1 gene (C3435T). CD4+T-cell counts and plasma viral load were analyzed before and after LPV/r initiation; LPV/r therapeutic drug monitoring (TDM) was determined at 12-hours.
LPV/r TDM (ng/ml) did not show significant differences among CYP3A4 or CYP3A5 SNPs, although a mean lower level of LPV/r was associated with detection of several SNPs: CYP3A5*3 rs776746; CYP3A5 rs28365088, CYP3A5 rs15524, CYP3A4 rs2687116, and a not already described polymorphism CYP3A4 nt20338. In follow-up analysis, <90% adherence was the main factor associated with virological failure of LPV/r monotherapy (83.3% of failure vs 34.4%, p<0.001 at log-rank test). Adjusting for adherence, the detection of a single CYP3A5*3 rs776746 and CYP3A5 rs15524 SNPs was associated with higher probability of LPV/r monotherapy failure (p<0.01), and in general, detection of any CYP3A5 SNP was associated with failure (26.2% vs 58.3%, p=0.067). No-association with detection of any CYP3A4 SNPs was found. MDR1 TT variants showed significant lower frequency of treatment failure (0.0% vs 47.7%, p=0.026), since non-TT homozygote patient failed LPV/r monotherapy.
Efficacy of PI monotherapy is strongly dependent from patient adherence, but, in adherent patients, genetic factors, such as CYP3A5 and MDR1-C3435T gene variants, may affect the response to treatment, though their role, as well of other genetic variants, need further investigation.
PMCID: PMC4224892  PMID: 25394094
2.  Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: potential implications for the metabolism of HIV drugs 
BMC Medical Genetics  2014;15:76.
Drug metabolism via the cytochrome P450 (CYP450) system has emerged as an important determinant in the occurrence of several drug interactions (adverse drug reactions, reduced pharmacological effect, drug toxicities). In particular, CYP3A4 and CYP3A5 (interacting with more than 60% of licensed drugs) exhibit the most individual variations of gene expression, mostly caused by single nucleotide polymorphisms (SNPs) within the regulatory region of the CYP3A4 and CYP3A5 genes which might affect the level of enzyme production.
In this study, we sought to improve the performance of sensitive screening for CYP3A polymorphism detection in twenty HIV-1 infected patients undergoing lopinavir/ritonavir (LPV/r) monotherapy.
The study was performed by an effective, easy and inexpensive home-made Polymerase Chain Reaction Direct Sequencing approach for analyzing CYP3A4 and CYP3A5 genes which can detect both reported and unreported genetic variants potentially associated with altered or decreased functions of CYP3A4 and CYP3A5 proteins. Proportions and tests of association were used.
Among the genetic variants considered, CYP3A4*1B (expression of altered function) was only found in 3 patients (15%) and CYP3A5*3 (expression of splicing defect) in 3 other patients (15%). CYP3A5*3 did not appear to be associated with decreased efficacy of LPV/r in any patient, since none of the patients carrying this variant showed virological rebound during LPV/r treatment or low levels of TDM. In contrast, low-level virological rebound was observed in one patient and a low TDM level was found in another; both were carrying CYP3A4*1B.
Our method exhibited an overall efficiency of 100% (DNA amplification and sequencing in our group of patients). This may contribute to producing innovative results for better understanding the inter-genotypic variability in gene coding for CYP3A, and investigating SNPs as biological markers of individual response to drugs requiring metabolism via the cytochrome P450 system.
PMCID: PMC4083125  PMID: 24986243
Polymorphisms; Variability; Pharmacogenetics; Cytocrome P450
3.  Comparative Analysis of Drug Resistance Among B and the Most Prevalent Non-B HIV Type 1 Subtypes (C, F, and CRF02_AG) in Italy 
AIDS Research and Human Retroviruses  2012;28(10):1285-1293.
In recent years, increasing numbers of patients infected with HIV-1 non-B subtypes have been treated with modern antiretroviral regimens. Therefore, a better knowledge of HIV drug resistance in non-B strains is crucial. Thus, we compared the mutational pathways involved in drug resistance among the most common non-B subtypes in Italy (F, C, and CRF02_AG) and the B subtype. In total, 2234 pol sequences from 1231 virologically failing patients from Central Italy were analyzed. The prevalence of resistance mutations in protease and reverse transcriptase between non-B and B subtypes has been evaluated. Among patients treated with nucleoside/nucleotide reverse transcriptase inhibitors (NRTI) and with thymidine analogues (TA) experience, TAMs1 M41L and L210W were less prevalent in CRF02_AG, while TAMs2 T215F and K219E were more prevalent in the F subtype. In NRTI-treated patients having experience with abacavir, didanosine, tenofovir, or stavudine the K65R mutation was mostly prevalent in the C subtype. In non-NRTI (NNRTI)-treated patients infected by the C subtype the prevalence of K103N was lower than in patients infected with other subtypes, while the prevalence of Y181C and Y188L was higher compared to subtype B. The prevalence of Y181C was higher also in subtype F as compared to subtype B. In patients treated with protease inhibitors, L89V was predominantly found in CRF02_AG, while the TPV resistance mutation T74P was predominantly found in the C subtype. Some differences in the genotypic drug resistance have been found among patients infected with B, C, F, and CRF02_AG subtypes in relationship to treatment. These results may be useful for the therapeutic management of individuals infected with HIV-1 non-B strains.
PMCID: PMC3448092  PMID: 22417570
4.  Study of Genotypic and Phenotypic HIV-1 Dynamics of Integrase Mutations During Raltegravir Treatment: A Refined Analysis by Ultra-Deep 454 Pyrosequencing 
The Journal of Infectious Diseases  2012;205(4):557-567.
Background. The dynamics of raltegravir-resistant variants and their impact on virologic response in 23 HIV-1–infected patients, who started a salvage raltegravir-containing regimen, were investigated.
Methods. Integrase population sequencing and Ultra-Deep-454 Pyrosequencing (UDPS) were performed on plasma samples at baseline and at raltegravir failure. All integrase mutations detected at a frequency ≥1% were considered to be reliable for the UDPS analyses. Phylogenetic and phenotypic resistance analyses were also performed.
Results. At baseline, primary resistance mutations were not detected by both population and UDPS genotypic assays; few secondary mutations (T97A-V151I-G163R) were rarely detected and did not show any statistically association either with virologic response at 24-weeks or with the development of resistant variants at failure. At UDPS, not all resistant variants appearing early during treatment evolved as major populations during failure; only specific resistance pathways (Y143R-Q148H/R-N155H) associated with an increased rate of fitness and phenotypic resistance were selected.
Conclusions. Resistance to raltegravir in integrase strand transfer inhibitor–naive patients remains today a rare event, which might be changed by future extensive use of such drugs. In our study, pathways of resistance at failure were not predicted by baseline mutations, suggesting that evolution plus stochastic selection plays a major role in the appearance of integrase-resistance mutations, whereas fitness and resistance are dominant factors acting for the late selection of resistant quasispecies.
PMCID: PMC3266134  PMID: 22238474
5.  Molecular Epidemiology of HIV Type 1 CRF02_AG in Cameroon and African Patients Living in Italy 
AIDS Research and Human Retroviruses  2011;27(11):1173-1182.
HIV-1 CRF02_AG accounts for >50% of infected individuals in Cameroon. CRF02_AG prevalence has been increasing both in Africa and Europe, particularly in Italy because of migrations from the sub-Saharan region. This study investigated the molecular epidemiology of CRF02_AG in Cameroon by employing Bayesian phylodynamics and analyzed the relationship between HIV-1 CRF02_AG isolates circulating in Italy and those prevalent in Africa to understand the link between the two epidemics. Among 291 Cameroonian reverse transcriptase sequences analyzed, about 70% clustered within three distinct clades, two of which shared a most recent common ancestor, all related to sequences from Western Africa. The major Cameroonian clades emerged during the mid-1970s and slowly spread during the next 30 years. Little or no geographic structure was detected within these clades. One of the major driving forces of the epidemic was likely the high accessibility between locations in Southern Cameroon contributing to the mobility of the population. The remaining Cameroonian sequences and the new strains isolated from Italian patients were interspersed mainly within West and Central African sequences in the tree, indicating a continuous exchange of CRF02_AG viral strains between Cameroon and other African countries, as well as multiple independent introductions in the Italian population. The evaluation of the spread of CRF02_AG may provide significant insight about the future dynamics of the Italian and European epidemic.
PMCID: PMC3206741  PMID: 21453131
6.  Selected amino acid mutations in HIV-1 B subtype gp41 are Associated with Specific gp120V3 signatures in the regulation of Co-Receptor usage 
Retrovirology  2011;8:33.
The third variable loop (V3) of the HIV-1 gp120 surface protein is a major determinant of cellular co-receptor binding. However, HIV-1 can also modulate its tropism through other regions in gp120, such as V1, V2 and C4 regions, as well as in the gp41 protein. Moreover, specific changes in gp41 are likely to be responsible for of damage in gp120-CCR5 interactions, resulting in potential resistance to CCR5 inhibitors.
In order to genetically characterize the two envelope viral proteins in terms of co-receptor usage, we have analyzed 526 full-length env sequences derived from HIV-1 subtype-B infected individuals, from our and public (Los Alamos) databases. The co-receptor usage was predicted by the analysis of V3 sequences using Geno2Pheno (G2P) algorithm. The binomial correlation phi coefficient was used to assess covariation among gp120V3 and gp41 mutations; subsequently the average linkage hierarchical agglomerative clustering was performed.
According to G2P false positive rate (FPR) values, among 526 env-sequences analyzed, we further characterized 196 sequences: 105 with FPR <5% and 91 with FPR >70%, for X4-using and R5-using viruses, respectively.
Beyond the classical signatures at 11/25 V3 positions (S11S and E25D, R5-tropic viruses; S11KR and E25KRQ, X4-tropic viruses), other specific V3 and gp41 mutations were found statistically associated with the co-receptor usage. Almost all of these specific gp41 positions are exposed on the surface of the glycoprotein. By the covariation analysis, we found several statistically significant associations between V3 and gp41 mutations, especially in the context of CXCR4 viruses. The topology of the dendrogram showed the existence of a cluster associated with R5-usage involving E25DV3, S11SV3, T22AV3, S129DQgp41 and A96Ngp41 signatures (bootstrap = 0.88). Conversely, a large cluster was found associated with X4-usage involving T8IV3, S11KRV3, F20IVYV3, G24EKRV3, E25KRV3, Q32KRV3, A30Tgp41, A189Sgp41, N195Kgp41 and L210Pgp41 mutations (bootstrap = 0.84).
Our results show that gp120V3 and several specific amino acid changes in gp41 are associated together with CXCR4 and/or CCR5 usage. These findings implement previous observations that determinants of tropism may reside outside the V3-loop, even in the gp41. Further studies will be needed to confirm the degree to which these gp41 mutations contribute directly to co-receptor use.
PMCID: PMC3117778  PMID: 21569409
7.  Treatment with the Fusion Inhibitor Enfuvirtide Influences the Appearance of Mutations in the Human Immunodeficiency Virus Type 1 Regulatory Protein Rev▿  
The gp41-encoding sequence of the env gene contains in two separate regions the Rev-responsive elements (RRE) and the alternative open reading frame of the second exon of the regulatory protein Rev. The binding of Rev to the RRE allows the transport of unspliced/singly spliced viral mRNAs out of the nucleus, an essential step in the life cycle of human immunodeficiency virus type 1 (HIV-1). In this study, we have investigated whether the fusion-inhibitor enfuvirtide (ENF) can induce mutations in Rev and if these mutations correlate with the classical ENF resistance gp41 mutations and with viremia and CD4 cell count. Specific Rev mutations were positively associated with ENF treatment and significantly correlated with classical ENF resistance gp41 mutations. In particular, a cluster was observed for the Rev mutations E57A (E57Arev) and N86Srev with the ENF resistance gp41 mutations Q40H (Q40Hgp41) and L45Mgp41. In addition, the presence at week 48 of the E57Arev correlates with a significant viremia increase from baseline to week 48 and with a CD4 cell count loss from baseline to week 48. By modeling the RRE structure, we found that the Q40gp41 and L45gp41 codons form complementary base pairs in a region of the RRE involved in Rev binding. The conformation of this Rev-binding site is disrupted when Q40Hgp41 and L45Mgp41 occur alone while it is restored when both mutations are present. In conclusion, our study shows that ENF pressure may also affect both Rev and RRE structures and can provide an excellent example of compensatory evolution. This highlights the multiple roles of ENF (and perhaps other entry inhibitors) in modulating the correct interplay between the different HIV-1 genes and proteins during the HIV-1 life cycle.
PMCID: PMC2704662  PMID: 19124665
8.  Characterization of the patterns of drug-resistance mutations in newly diagnosed HIV-1 infected patients naïve to the antiretroviral drugs 
The transmission of HIV-1 drug-resistant strains in drug naive patients may seriously compromise the efficacy of a first-line antiretroviral treatment. To better define this problem, a study in a cohort of newly diagnosed HIV-1 infected individuals has been conducted. This study is aimed to assess the prevalence and the patterns of the mutations recently associated with transmitted drug resistance in the reverse transcriptase (RT) and in protease (PR) of HIV-1.
Prevalence of transmitted drug resistant strains is determined in 255 newly diagnosed HIV-1 infected patients enrolled in different counselling and testing (CT) centres in Central Italy; the Avidity Index (AI) on the first available serum sample is also used to estimate time since infection. Logistic regression models are used to determine factors associated with infection by drug resistant HIV-1 strains.
The prevalence of HIV-1 strains with at least one major drug resistance mutation is 5.9% (15/255); moreover, 3.9% (10/255) of patients is infected with HIV nucleoside reverse transcriptase inhibitor (NRTI)-resistant viruses, 3.5% (9/255) with HIV non-NRTI-resistant viruses and 0.4% (1/255) with HIV protease inhibitor (PI)-resistant viruses. Most importantly, almost half (60.0%) of patients carries HIV-1 resistant strains with more than one major drug resistance mutation. In addition, patients who had acquired HIV through homosexual intercourses are more likely to harbour a virus with at least one primary resistance mutation (OR 7.7; 95% CI: 1.7–35.0, P = 0.008).
The prevalence of drug resistant HIV-1 strains among newly diagnosed individuals in Central Italy is consistent with the data from other European countries. Nevertheless, the presence of drug-resistance HIV-1 mutations in complex patterns highlights an additional potential risk for public health and strongly supports the extension of wide genotyping to newly diagnosed HIV-1 infected patients.
PMCID: PMC2725045  PMID: 19607681
9.  High Sequence Conservation of Human Immunodeficiency Virus Type 1 Reverse Transcriptase under Drug Pressure despite the Continuous Appearance of Mutations 
Journal of Virology  2005;79(16):10718-10729.
To define the extent of sequence conservation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) in vivo, the first 320 amino acids of RT obtained from 2,236 plasma-derived samples from a well-defined cohort of 1,704 HIV-1-infected individuals (457 drug naïve and 1,247 drug treated) were analyzed and examined in structural terms. In naïve patients, 233 out of these 320 residues (73%) were conserved (<1% variability). The majority of invariant amino acids clustered into defined regions comprising between 5 and 29 consecutive residues. Of the nine longest invariant regions identified, some contained residues and domains critical for enzyme stability and function. In patients treated with RT inhibitors, despite profound drug pressure and the appearance of mutations primarily associated with resistance, 202 amino acids (63%) remained highly conserved and appeared mostly distributed in regions of variable length. This finding suggests that participation of consecutive residues in structural domains is strictly required for cooperative functions and sustainability of HIV-1 RT activity. Besides confirming the conservation of amino acids that are already known to be important for catalytic activity, stability of the heterodimer interface, and/or primer/template binding, the other 62 new invariable residues are now identified and mapped onto the three-dimensional structure of the enzyme. This new knowledge could be of help in the structure-based design of novel resistance-evading drugs.
PMCID: PMC1182657  PMID: 16051864

Results 1-9 (9)