Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Circulating Biomarkers of Immune Activation Distinguish Viral Suppression from Nonsuppression in HAART-Treated Patients with Advanced HIV-1 Subtype C Infection 
Mediators of Inflammation  2014;2014:198413.
Few studies have examined immune activation profiles in patients with advanced HIV-1 subtype C infection or assessed their potential to predict responsiveness to HAART. BioPlex, ELISA, and nephelometric procedures were used to measure plasma levels of inflammatory biomarkers in HIV-1 subtype C-infected patients sampled before and after 6 months of successful HAART (n = 20); in patients failing HAART (n = 30); and in uninfected controls (n = 8). Prior to HAART, CXCL9, CXCL10, β2M, sTNF-R1, TGF-β1, IFN-γ, IL-6, TNF, and sCD14 were significantly elevated in HIV-1-infected patients compared to controls (P < 0.01). All of these markers, with the exception of sTNF-R1, were also elevated in patients failing HAART (P < 0.05). The persistently elevated levels of CXCL9, CXCL10, and β2M in patients failing therapy in the setting of a marked reduction in these markers in patients on successful HAART suggest that they may be useful not only to monitor immune activation during HAART, but also to distinguish between good and poor responders. In the case of sCD14 and TGF-β1, the levels of these biomarkers remained persistently elevated despite HAART-induced virological suppression, a finding that is consistent with ongoing monocyte-macrophage activation, underscoring a potential role for adjuvant anti-inflammatory therapy.
PMCID: PMC3997875  PMID: 24808634
2.  Primary Drug Resistance in South Africa: Data from 10 Years of Surveys 
HIV-1 transmitted drug resistance (TDR) could reverse the gains of antiretroviral rollout. To ensure that current first-line therapies remain effective, TDR levels in recently infected treatment-naive patients need to be monitored. A literature review and data mining exercise was carried out to determine the temporal trends in TDR in South Africa. In addition, 72 sequences from seroconvertors identified from Africa Centre's 2010 HIV surveillance round were also examined for TDR. Publicly available data on TDR were retrieved from GenBank, curated in RegaDB, and analyzed using the Calibrated Population Resistance Program. There was no evidence of TDR from the 2010 rural KwaZulu Natal samples. Ten datasets with a total of 1618 sequences collected between 2000 and 2010 were pooled to provide a temporal analysis of TDR. The year with the highest TDR rate was 2002 [6.67%, 95% confidence interval (CI): 3.09–13.79%; n=6/90]. After 2002, TDR levels returned to <5% (WHO low-level threshold) and showed no statistically significant increase in the interval between 2002 and 2010. The most common mutations were associated with NNRTI resistance, K103N, followed by Y181C and Y188C/L. Five sequences had multiple resistance mutations associated with NNRTI resistance. There is no evidence of TDR in rural KwaZulu-Natal. TDR levels in South Africa have remained low following a downward trend since 2003. Continuous vigilance in monitoring of TDR is needed as more patients are initiated and maintained onto antiretroviral therapy.
PMCID: PMC3358100  PMID: 22251009
4.  A standardized framework for accurate, high-throughput genotyping of recombinant and non-recombinant viral sequences 
Nucleic Acids Research  2009;37(Web Server issue):W634-W642.
Human immunodeficiency virus type-1 (HIV-1), hepatitis B and C and other rapidly evolving viruses are characterized by extremely high levels of genetic diversity. To facilitate diagnosis and the development of prevention and treatment strategies that efficiently target the diversity of these viruses, and other pathogens such as human T-lymphotropic virus type-1 (HTLV-1), human herpes virus type-8 (HHV8) and human papillomavirus (HPV), we developed a rapid high-throughput-genotyping system. The method involves the alignment of a query sequence with a carefully selected set of pre-defined reference strains, followed by phylogenetic analysis of multiple overlapping segments of the alignment using a sliding window. Each segment of the query sequence is assigned the genotype and sub-genotype of the reference strain with the highest bootstrap (>70%) and bootscanning (>90%) scores. Results from all windows are combined and displayed graphically using color-coded genotypes. The new Virus-Genotyping Tools provide accurate classification of recombinant and non-recombinant viruses and are currently being assessed for their diagnostic utility. They have incorporated into several HIV drug resistance algorithms including the Stanford ( and two European databases ( and and have been successfully used to genotype a large number of sequences in these and other databases. The tools are a PHP/JAVA web application and are freely accessible on a number of servers including:
PMCID: PMC2703899  PMID: 19483099
5.  Optimization of the Oligonucleotide Ligation Assay, a Rapid and Inexpensive Test for Detection of HIV-1 Drug Resistance Mutations, for Non-North American Variants 
We evaluated the feasibility of the oligonucleotide ligation assay (OLA), a specific, sensitive, and economical ligase-based point mutation assay designed to detect HIV-1 drug–resistance mutations at 12 codons of HIV-1 subtype B pol, for potential use in resource-poor settings.
Specimens from HIV-1–infected individuals collected by 7 international laboratories, including subtypes A, B, C, D, F, G, J, and recombinants AE and AG, were tested by the OLA developed for HIV-1 subtype B. Common polymorphisms that interfered with reactivity of the OLA were identified and modified probes designed and evaluated.
92.5% (2410) of 2604 codons in specimens from 217 individuals were successfully genotyped by the subtype B OLA. A high rate (range 8.3%–31.2%) of indeterminate results (negative OLA reaction for both mutant and wild type) was observed for 5 codons. Modified probes at reverse transcriptase codons 151 and 184 and protease codon 90 increased the rate of valid OLA to 96.1%.
The OLA designed for HIV-1 subtype B genotyped most pol codons in non-B subtypes from Asia and Africa but was improved by addition of several modified probes. International laboratories experienced in molecular techniques were able to perform the OLA.
PMCID: PMC2583356  PMID: 18614915
HIV drug resistance; HIV-1 non-B subtypes; resistance testing; oligonucleotide ligation assay; minor genotypes; point mutation assay; dried blood spots
6.  BioAfrica's HIV-1 Proteomics Resource: Combining protein data with bioinformatics tools 
Retrovirology  2005;2:18.
Most Internet online resources for investigating HIV biology contain either bioinformatics tools, protein information or sequence data. The objective of this study was to develop a comprehensive online proteomics resource that integrates bioinformatics with the latest information on HIV-1 protein structure, gene expression, post-transcriptional/post-translational modification, functional activity, and protein-macromolecule interactions. The BioAfrica HIV-1 Proteomics Resource is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites. The HIV-1 Protein Data-mining Tool includes a set of 27 group M (subtypes A through K) reference sequences that can be used to assess the influence of genetic variation on immunological and functional domains of the protein. The BLAST Structure Tool identifies proteins with similar, experimentally determined topologies, and the Tools Directory provides a categorized list of websites and relevant software programs. This combined database and software repository is designed to facilitate the capture, retrieval and analysis of HIV-1 protein data, and to convert it into clinically useful information relating to the pathogenesis, transmission and therapeutic response of different HIV-1 variants. The HIV-1 Proteomics Resource is readily accessible through the BioAfrica website at:
PMCID: PMC555852  PMID: 15757512
7.  In Vitro Hypersusceptibility of Human Immunodeficiency Virus Type 1 Subtype C Protease to Lopinavir 
In order to characterize the impact of genetic polymorphisms on the susceptibility of subtype C strains of human immunodeficiency virus type 1 to protease inhibitors (PIs), a subtype B protease that originated from an infectious clone was modified through site-directed mutagenesis to include the amino acid residue signatures of subtype C viruses (I15V, M36I, R41K, H69K, L89 M) with (clone C6) or without (clone C5) an I93L polymorphism present as a molecular signature of the worldwide subtype C protease. Their susceptibilities to commercially available PIs were measured by a recombinant virus phenotyping assay. We could not detect any differences in the 50% inhibitory concentration (IC50s) of amprenavir, indinavir, ritonavir, saquinavir, and nelfinavir for the clones analyzed. However, we did observe hypersusceptibility to lopinavir solely in clone C6, which includes the I93L substitution (a 2.6-fold decrease in the IC50 compared to that for the subtype B reference strain). The same phenotypic behavior was observed for 11 Brazilian and South African clinical isolates tested, in which only subtype C isolates carrying the I93L mutation presented significant hypersusceptibility to lopinavir.
PMCID: PMC182615  PMID: 12936979
8.  Variability at Human Immunodeficiency Virus Type 1 Subtype C Protease Cleavage Sites: an Indication of Viral Fitness? 
Journal of Virology  2003;77(17):9422-9430.
Naturally occurring polymorphisms in the protease of human immunodeficiency virus type 1 (HIV-1) subtype C would be expected to lead to adaptive (compensatory) changes in protease cleavage sites. To test this hypothesis, we examined the prevalences and patterns of cleavage site polymorphisms in the Gag, Gag-Pol, and Nef cleavage sites of C compared to those in non-C subtypes. Codon-based maximum-likelihood methods were used to assess the natural selection and evolutionary history of individual cleavage sites. Seven cleavage sites (p17/p24, p24/p2, NC/p1, NC/TFP, PR/RT, RT/p66, and p66/IN) were well conserved over time and in all HIV-1 subtypes. One site (p1/p6gag) exhibited moderate variation, and four sites (p2/NC, TFP/p6pol, p6pol/PR, and Nef) were highly variable, both within and between subtypes. Three of the variable sites are known to be major determinants of polyprotein processing and virion production. P2/NC controls the rate and order of cleavage, p6gag is an important phosphoprotein required for virion release, and TFP/p6pol, a novel cleavage site in the transframe domain, influences the specificity of Gag-Pol processing and the activation of protease. Overall, 58.3% of the 12 HIV-1 cleavage sites were significantly more diverse in C than in B viruses. When analyzed as a single concatenated fragment of 360 bp, 96.0% of group M cleavage site sequences fell into subtype-specific phylogenetic clusters, suggesting that they coevolved with the virus. Natural variation at C cleavage sites may play an important role, not only in regulation of the viral cycle but also in disease progression and response to therapy.
PMCID: PMC187406  PMID: 12915557
9.  Mosaic Genomes of the Six Major Primate Lentivirus Lineages Revealed by Phylogenetic Analyses 
Journal of Virology  2003;77(13):7202-7213.
To clarify the origin and evolution of the primate lentiviruses (PLVs), which include human immunodeficiency virus types 1 and 2 as well as their simian relatives, simian immunodeficiency viruses (SIVs), isolated from several host species, we investigated the phylogenetic relationships among the six supposedly nonrecombinant PLV lineages for which the full genome sequences are available. Employing bootscanning as an exploratory tool, we located several regions in the PLV genome that seem to have uncertain or conflicting phylogenetic histories. Phylogeny reconstruction based on distance and maximum-likelihood algorithms followed by a number of statistical tests confirms the existence of at least five putative recombinant fragments in the PLV genome with different clustering patterns. Split decomposition analysis also shows that phylogenetic relationships among PLVs may be better represented by network-based graphs, such as the ones produced by SplitsTree. Our findings not only imply that the six so-called pure PLV lineages have in fact mosaic genomes but also make more unlikely the hypothesis of cospeciation of SIVs and their simian hosts.
PMCID: PMC164811  PMID: 12805419
10.  Multicenter Evaluation of Use of Dried Blood and Plasma Spot Specimens in Quantitative Assays for Human Immunodeficiency Virus RNA: Measurement, Precision, and RNA Stability 
Journal of Clinical Microbiology  2003;41(5):1888-1893.
Eleven laboratories evaluated the use of dried blood and plasma spots for quantitation of human immunodeficiency virus (HIV) RNA by two commercially available RNA assays, the Roche Amplicor HIV-1 Monitor and the bioMerieux NucliSens HIV-1 QT assays. The recovery of HIV RNA was linear over a dynamic range extending from 4,000 to 500,000 HIV type 1 RNA copies/ml. The Monitor assay appeared to have a broader dynamic range and seemed more sensitive at lower concentrations. However, the NucliSens assay gave more consistent results and could be performed without modification of the kit. HIV RNA was stable in dried whole blood or plasma stored at room temperature or at −70°C for up to 1 year. Dried blood and dried plasma spots can be used as an easy and inexpensive means for the collection and storage of specimens under field conditions for the diagnosis of HIV infection and the monitoring of antiretroviral therapy.
PMCID: PMC154666  PMID: 12734222

Results 1-10 (10)