PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  HSV-2-Driven Increase in the Expression of α4β7 Correlates with Increased Susceptibility to Vaginal SHIVSF162P3 Infection 
PLoS Pathogens  2014;10(12):e1004567.
The availability of highly susceptible HIV target cells that can rapidly reach the mucosal lymphoid tissues may increase the chances of an otherwise rare transmission event to occur. Expression of α4β7 is required for trafficking of immune cells to gut inductive sites where HIV can expand and it is expressed at high level on cells particularly susceptible to HIV infection. We hypothesized that HSV-2 modulates the expression of α4β7 and other homing receptors in the vaginal tissue and that this correlates with the increased risk of HIV acquisition in HSV-2 positive individuals. To test this hypothesis we used an in vivo rhesus macaque (RM) model of HSV-2 vaginal infection and a new ex vivo model of macaque vaginal explants. In vivo we found that HSV-2 latently infected RMs appeared to be more susceptible to vaginal SHIVSF162P3 infection, had higher frequency of α4β7high CD4+ T cells in the vaginal tissue and higher expression of α4β7 and CD11c on vaginal DCs. Similarly, ex vivo HSV-2 infection increased the susceptibility of the vaginal tissue to SHIVSF162P3. HSV-2 infection increased the frequencies of α4β7high CD4+ T cells and this directly correlated with HSV-2 replication. A higher amount of inflammatory cytokines in vaginal fluids of the HSV-2 infected animals was similar to those found in the supernatants of the infected explants. Remarkably, the HSV-2-driven increase in the frequency of α4β7high CD4+ T cells directly correlated with SHIV replication in the HSV-2 infected tissues. Our results suggest that the HSV-2-driven increase in availability of CD4+ T cells and DCs that express high levels of α4β7 is associated with the increase in susceptibility to SHIV due to HSV-2. This may persists in absence of HSV-2 shedding. Hence, higher availability of α4β7 positive HIV target cells in the vaginal tissue may constitute a risk factor for HIV transmission.
Author Summary
Understanding the factors that correlate with an increased risk of acquiring HIV infection is key to identify new means of preventing HIV transmission. HSV-2 infection increases the risk of HIV transmission even in absence of visible lesions and inflammation. In order to explore HSV-2− associated factors that could explain this phenomenon, we used a model of asymptomatic HSV-2 infection in macaques and ex vivo cultures of biopsied vaginal tissue. We determined that HSV-2 infection is associated with an increase in subsets of immune cells that express high levels of α4β7, a molecule needed by the cells to reach the gut and the gut lymphoid tissues. The gut is an important site for HIV infection and pathogenesis and CD4+ T cells expressing high levels of α4β7 (α4β7high) are highly susceptible to the virus. We determined that the HSV-2-driven increase in these cells correlates with an increased susceptibility of the vaginal mucosa to SIV infection. Thus, our results suggest that an increased availability of α4β7high cells at the mucosal site of HIV exposure may constitute a risk factor for HIV acquisition in HSV-2 positive and, possibly, negative individuals.
doi:10.1371/journal.ppat.1004567
PMCID: PMC4270786  PMID: 25521298
2.  A MIV-150/Zinc Acetate Gel Inhibits SHIV-RT Infection in Macaque Vaginal Explants 
PLoS ONE  2014;9(9):e108109.
To extend our observations that single or repeated application of a gel containing the NNRTI MIV-150 (M) and zinc acetate dihydrate (ZA) in carrageenan (CG) (MZC) inhibits vaginal transmission of simian/human immunodeficiency virus (SHIV)-RT in macaques, we evaluated safety and anti-SHIV-RT activity of MZC and related gel formulations ex vivo in macaque mucosal explants. In addition, safety was further evaluated in human ectocervical explants. The gels did not induce mucosal toxicity. A single ex vivo exposure to diluted MZC (1∶30, 1∶100) and MC (1∶30, the only dilution tested), but not to ZC gel, up to 4 days prior to viral challenge, significantly inhibited SHIV-RT infection in macaque vaginal mucosa. MZC's activity was not affected by seminal plasma. The antiviral activity of unformulated MIV-150 was not enhanced in the presence of ZA, suggesting that the antiviral activity of MZC was mediated predominantly by MIV-150. In vivo administration of MZC and CG significantly inhibited ex vivo SHIV-RT infection (51–62% inhibition relative to baselines) of vaginal (but not cervical) mucosa collected 24 h post last gel exposure, indicating barrier effect of CG. Although the inhibitory effect of MZC (65–74%) did not significantly differ from CG (32–45%), it was within the range of protection (∼75%) against vaginal SHIV-RT challenge 24 h after gel dosing. Overall, the data suggest that evaluation of candidate microbicides in macaque explants can inform macaque efficacy and clinical studies design. The data support advancing MZC gel for clinical evaluation.
doi:10.1371/journal.pone.0108109
PMCID: PMC4178065  PMID: 25259616
3.  Simian Immunodeficiency Virus Interactions with Macaque Dendritic Cells 
This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus–host interactions critical for transmission and disease pathogenesis. HIV infection is associated with changes in frequency, phenotype, and function of the two principal subsets of DCs, myeloid DCs and plasmacytoid DCs. DC biology during pathogenic SIV infection is strikingly similar to that observed in HIV-infected patients. The NHP models provide an opportunity to dissect the requirements for DC-driven SIV infection and to understand how SIV distorts the DC system to its advantage. Furthermore, the SIV model of mucosal transmission enables the study of the earliest events of infection at the portal of entry that cannot be studied in humans, and, importantly, the involvement of DCs. Nonpathogenic infection in African NHP hosts allows investigations into the role of DCs in disease control. Understanding how DCs are altered during SIV infection is critical to the design of therapeutic and preventative strategies against HIV.
doi:10.1007/978-1-4614-4433-6_6
PMCID: PMC3775332  PMID: 22975875
4.  The Nonnucleoside Reverse Transcription Inhibitor MIV-160 Delivered from an Intravaginal Ring, But Not from a Carrageenan Gel, Protects Against Simian/Human Immunodeficiency Virus-RT Infection 
AIDS Research and Human Retroviruses  2012;28(11):1467-1475.
Abstract
We previously showed that a carrageenan (CG) gel containing 50 μM MIV-150 (MIV-150/CG) reduced vaginal simian/human immunodeficiency virus (SHIV)-RT infection of macaques (56%, p>0.05) when administered daily for 2 weeks with the last dose given 8 h before challenge. Additionally, when 100 mg of MIV-150 was loaded into an intravaginal ring (IVR) inserted 24 h before challenge and removed 2 weeks after challenge, >80% protection was observed (p<0.03). MIV-160 is a related NNRTI with a similar IC50, greater aqueous solubility, and a shorter synthesis. To objectively compare MIV-160 with MIV-150, herein we evaluated the antiviral effects of unformulated MIV-160 in vitro as well as the in vivo protection afforded by MIV-160 delivered in CG (MIV-160/CG gel) and in an IVR under regimens used with MIV-150 in earlier studies. Like MIV-150, MIV-160 exhibited potent antiviral activity against SHIV-RT in macaque vaginal explants. However, formulated MIV-160 exhibited divergent effects in vivo. The MIV-160/CG gel offered no protection compared to CG alone, whereas the MIV-160 IVRs protected significantly. Importantly, the results of in vitro release studies of the MIV-160/CG gel and the MIV-160 IVR suggested that in vivo efficacy paralleled the amount of MIV-160 released in vitro. Hundreds of micrograms of MIV-160 were released daily from IVRs while undetectable amounts of MIV-160 were released from the CG gel. Our findings highlight the importance of testing different modalities of microbicide delivery to identify the optimal formulation for efficacy in vivo.
doi:10.1089/aid.2012.0080
PMCID: PMC3484820  PMID: 22816564
5.  Vcsa1 Acts as a Marker of Erectile Function Recovery After Gene Therapeutic and Pharmacological Interventions 
The Journal of urology  2009;181(6):2806-2815.
Purpose
We identified molecular markers of erectile function, particularly those responding to erectile dysfunction treatment.
Materials and Methods
Sprague-Dawley retired breeder rats were intracorporeally injected with pVAX-hSlo, pSMAA-hSlo or the control plasmid pVAX. One week later the intracorporeal pressure-to-blood pressure ratio and gene expression were determined by microarray analysis and quantitative reverse transcriptase-polymerase chain reaction. Rat corporeal cells were transfected in vitro with pVAX-hSlo, pSMAA-hSlo or pVAX and the change in gene expression was determined. We also determined whether Vcsa1 expression was changed after pharmacotherapy using tadalafil.
Results
Animals treated with vectors expressing hSlo had significantly improved erectile function compared to that in controls, accompanied by changed expression of a subset of genes. Vcsa1 was one of the genes that was most changed in expression (the third of approximately 31,000 with greater than 10-fold up-regulation). Changes in gene expression were different than those observed in corporeal cells transfected in vitro, distinguishing gene expression changes that were a direct effect of hSlo over expression. When tadalafil was administered in retired breeder rats, the Vcsa1 transcript increased 4-fold in corporeal tissue compared to that in untreated controls.
Conclusions
Our study identifies a set of genes that are changed in response to improved erectile function, rather than as a direct effect of treatment. We noted Vcsa1 may act as marker of the restoration of erectile function after gene transfer and pharmacotherapy.
doi:10.1016/j.juro.2009.01.096
PMCID: PMC2864534  PMID: 19375734
penis; gene expression; tadalafil; muscle; smooth; microarray analysis
6.  Testosterone Regulates Erectile Function and Vcsa1 Expression in the Corpora of Rats 
Summary
Vcsa1 plays an important role in the erectile physiology of the rat. We conducted experiments to determine if erectile function, testosterone levels and Vcsa1 expression were correlated. In orchiectomized rats, total testosterone in blood fell from an average of 4ng/ml to <0.04ng/ml. Erectile function was significantly lower compared to controls and Vcsa1 expression was significantly (>6-fold) decreased. Injection of orchiectomized animals with testosterone (2mg in 100ml sesame oil every 4 days for two weeks) restored average levels of testosterone to 2ng/ml, increased erectile function and significantly increased Vcsa1 expression. In isolated corporal cells there was testosterone dependent Vcsa1 expression. However, intracorporal injection of orchiectomized animals with a plasmid expressing Vcsa1 or its gene product Sialorphin (previously demonstrated to improve erectile function in old animals) gave no significant improvement in erectile function. Also, the ability of Sialorphin to reduce tension in corporal smooth muscle strips isolated from orchiectomized animals was impaired compared to controls.
doi:10.1016/j.mce.2009.02.001
PMCID: PMC2694216  PMID: 19428993
Vcsa1; testosterone; erectile function; corpora; submandibular gland

Results 1-6 (6)