Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation 
The E3 ubiquitin ligase component FBXW7 modulates homeostasis and inhibits tumorigenesis in the murine intestine.
The Fbxw7 (F-box/WD repeat–containing protein 7; also called CDC4, Sel10, Ago, and Fbw7) component of the SCF (Skp1/Cullin/F-box protein) E3 ubiquitin ligase complex acts as a tumor suppressor in several tissues and targets multiple transcriptional activators and protooncogenes for ubiquitin-mediated degradation. To understand Fbxw7 function in the murine intestine, in this study, we specifically deleted Fbxw7 in the murine gut using Villin-Cre (Fbxw7ΔG). In wild-type mice, loss of Fbxw7 in the gut altered homeostasis of the intestinal epithelium, resulted in elevated Notch and c-Jun expression, and induced development of adenomas at 9–10 mo of age. In the context of APC (adenomatous polyposis coli) deficiency (ApcMin/+ mice), loss of Fbxw7 accelerated intestinal tumorigenesis and death and promoted accumulation of β-catenin in adenomas at late but not early time points. At early time points, Fbxw7 mutant tumors showed accumulation of the DEK protooncogene. DEK expression promoted cell division and altered splicing of tropomyosin (TPM) RNA, which may also influence cell proliferation. DEK accumulation and altered TPM RNA splicing were also detected in FBXW7 mutant human colorectal tumor tissues. Given their reduced lifespan and increased incidence of intestinal tumors, ApcMin/+Fbxw7ΔG mice may be used for testing carcinogenicity and drug screening.
PMCID: PMC3039859  PMID: 21282377
2.  Pharmacokinetics of the time-dependent elimination of all-trans-retinoic acid in rats 
AAPS PharmSci  2004;6(1):1-9.
The time-dependent elimination kinetics of all-transretinoic acid (ATRA) has been associated with autoinduction of its metabolism and has led to the hypothesis that rapid development of acquired clinical resistance to ATRA may be prevented by coadministration of metabolic inhibitors. This study in rats was performed to investigate the pharmacokinetics and onset of timedependent elimination of ATRA, with the purpose of establishing an animal model suitable for in vivo preclinical studies of compounds capable of inhibiting ATRA metabolism. After the intravenous (IV) bolus administration of single doses of ATRA (1.60 mg kg−1 and 0.40 mg kg−1), the plasma concentration-time curves showed an accelerated decline at 180 minutes after dosing. The plasma clearance (Cl) of ATRA, determined after IV administration of a second dose (1.60 mg kg−1), at 180 minutes was greater than Cl after a single dose, thus indicating the existence of a time-dependent elimination process detectable 180 minutes after administration of the first dose. Such time-dependent elimination was confirmed by means of an IV constant-rate infusion of 0.48 mg h−1 kg−1 of ATRA during 10 hours. Peak plasma ATRA concentration was achieved at 180 minutes, after which the plasma concentration decreased to reach a much lower apparent steady-state drug concentration at 420 minutes. The area under the plasma concentration-time curve (AUC) obtained after oral administration of a second ATRA dose (1.60 mg kg−1) was ∼8% of the AUC obtained after a single oral dose; consistent with a time-dependent increase in the elimination of ATRA, as was observed after IV administration.
PMCID: PMC2750936  PMID: 18465253
all-trans-retinoic acid; time-dependent elimination; pharmacokinetic model; rat; intravenous administration; oral administration

Results 1-2 (2)