PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications 
AAPS PharmSci  2003;5(4):101-111.
The objective of this study was to develop and evaluate a hydrogel vehicle for sustained release of growth factors for wound healing applications. Hydrogels were fabricated using ultraviolet photo-crosslinking of acrylamide-functionalized nondegradable poly(vinyl alcohol) (PVA). Protein permeability was initially assessed using trypsin inhibitor (TI), a 21 000 MW model protein drug. TI permeability was altered by changing the solids content of the gel and by adding hydrophilic PVA fillers. As the PVA content increased from 10% to 20%, protein flux decreased, with no TI permeating through 20% PVA hydrogels. Further increase in model drug release was achieved by incorporating hydrophilic PVA fillers into the hydrogel. As filler molecular weight increased, TI flux increased. The mechanism for this is most likely an alteration in protein/gel interactions and transient variations in water content. The percent protein released was also altered by varying protein loading concentration. Release studies conducted using growth factor in vehicles with hydrophilic filler showed sustained release of platelet-derived growth factor (PDGF-β,β) for up to 3 days compared with less than 24 hours in the controls. In vitro bioactivity was demonstrated by doubling of normal human dermal fibroblas numbers when exposed to growth factor-loaded vehicle compared to control. The release vehicle developed in this study uses a rapid and simple fabrication method, and protein release can be tailored by modifying solid content, incorporating biocompatible hydrophilic fillers, and varying protein loading concentration.
doi:10.1208/ps050433
PMCID: PMC2750995  PMID: 15198521
photo-crosslinkable hydrogel; poly(vinyl alcohol); platelet-derived growth factor; bioactivity; sustained release
2.  Amphiphilic star-like macromolecules as novel carriers for topical delivery of nonsteroidal anti-inflammatory drugs 
AAPS PharmSci  2003;5(4):1-12.
The objective of this study was to evaluate amphiphilic star-like macromolecules (ASMs) as a topical drug delivery system. Indomethacin, piroxicam, and ketoprofen were individually encapsulated into the ASMs using coprecipitation. The effects of the ASMs on percutaneous permeation of nonsteroidal anti-inflammatory drugs (NSAIDs) across full thickness, hairless mouse skin were evaluated in vitro using modified Franz diffusion cells. In addition, solubility and in vitro release experiments were performed to characterize ASMs behavior in aqueous media. Poly(ethylene glycol) (PEG) and Pluronic P-85 were used as polymer controls to compare the role of PEG and amphiphilic behavior in the ASMs. In vitro release experiments indicated that ASMs can delay drug release (P⋖05), whereas solubility measurements showed that ASMs can increase NSAIDs aqueous solubility (P⋖05). Percutaneous permeation studies revealed that ASMs decreased both flux and Q24 of drugs compared with the control (P⋖10). Skin pretreatment studies with ASM-containing solution before drug application demonstrated that pretreatment similarly influenced NSAID percutaneous permeation. In conclusion, ASMs likely slow drug permeation through 2 mechanisms, delayed drug diffusion from its core and skin dehydration by its shell. Thus, ASMs may be useful for delayed dermal delivery or prevention of compound permeation through the skin (eg, sunscreens, N,N-diethyl-m-toluamide [DEET]) from aqueous formulations.
doi:10.1208/ps050426
PMCID: PMC2750988  PMID: 15198514
topical drug delivery; NSAIDs; polymeric micelle; permeation; drug release

Results 1-2 (2)