PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Bacterium-like particles as multi-epitope delivery platform for Plasmodium berghei circumsporozoite protein induce complete protection against malaria in mice 
Malaria Journal  2012;11:50.
Background
Virus-like particles have been regularly used as an antigen delivery system for a number of Plasmodium peptides or proteins. The present study reports the immunogenicity and protective efficacy of bacterium-like particles (BLPs) generated from Lactococcus lactis and loaded with Plasmodium berghei circumsporozoite protein (PbCSP) peptides.
Methods
A panel of BLP-PbCSP formulations differing in composition and quantity of B-cell, CD4+ and CD8+ T-cell epitopes of PbCSP were tested in BALB/c mice.
Results
BLP-PbCSP1 induced specific humoral responses but no IFN-γ ELISPOT response, protecting 30-40% of the immunized mice. BLP-PbCSP2, with reduced length of the non-immunogenic part of the T-cell-epitopes construct, increased induction of IFN-γ responses as well as protection up to 60-70%. Compared to controls, lower parasitaemia was observed in unprotected mice immunized with BLP-PbCSP1 or 2, suggestive for partial immunity. Finally, further increase of the number of B-cell epitopes and codon optimization (BLP-PbCSP4) induced the highest anti-CSP antibody levels and number of IFN-γ spots, resulting in sterile immunity in 100% of the immunized mice.
Conclusion
Presentation of Plasmodium-derived antigens using BLPs as a delivery system induced complete protection in a murine malaria model. Eventually, BLPs have the potential to be used as a novel versatile delivery platform in malaria vaccine development.
doi:10.1186/1475-2875-11-50
PMCID: PMC3337279  PMID: 22348325
BLP; CSP; Delivery platform; Immunization; Malaria; Plasmodium berghei
2.  Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection 
Mucosal immunology  2009;3(2):159-171.
Safe and effective immunization of newborns and infants can significantly reduce childhood mortality, yet conventional vaccines have been largely unsuccessful in stimulating the neonatal immune system. We explored the capacity of a novel mucosal antigen delivery system consisting of non-living, non-genetically modified Lactococcus lactis particles, designated Gram-positive Enhancer Matrix (GEM), to induce immune responses in the neonatal setting. Yersinia pestis LcrV, used as model protective antigen, was displayed on the GEM particles. Newborn mice immunized intranasally with GEM-LcrV developed LcrV-specific antibodies, Th1-type cell-mediated immunity, and were protected against lethal Y. pestis (plague) infection. The GEM particles activated and enhanced the maturation of neonatal dendritic cells both in vivo and in vitro. These dendritic cells showed increased capacities for secretion of pro-inflammatory and Th1-cell polarizing cytokines, antigen presentation and stimulation of CD4+ and CD8+ T cells. These data show that mucosal immunization with L. lactis GEM particles carrying vaccine antigens represents a promising approach to prevent infectious diseases early in life.
doi:10.1038/mi.2009.131
PMCID: PMC2863133  PMID: 19924118
3.  Intranasal Delivery of Influenza Subunit Vaccine Formulated with GEM Particles as an Adjuvant 
The AAPS Journal  2010;12(2):109-116.
Nasal administration of influenza vaccine has the potential to facilitate influenza control and prevention. However, when administered intranasally (i.n.), commercially available inactivated vaccines only generate systemic and mucosal immune responses if strong adjuvants are used, which are often associated with safety problems. We describe the successful use of a safe adjuvant Gram-positive enhancer matrix (GEM) particles derived from the food-grade bacterium Lactococcus lactis for i.n. vaccination with subunit influenza vaccine in mice. It is shown that simple admixing of the vaccine with the GEM particles results in a strongly enhanced immune response. Already after one booster, the i.n. delivered GEM subunit vaccine resulted in hemagglutination inhibition titers in serum at a level equal to the conventional intramuscular (i.m.) route. Moreover, i.n. immunization with GEM subunit vaccine elicited superior mucosal and Th1 skewed immune responses compared to those induced by i.m. and i.n. administered subunit vaccine alone. In conclusion, GEM particles act as a potent adjuvant for i.n. influenza immunization.
doi:10.1208/s12248-009-9168-2
PMCID: PMC2844513  PMID: 20058113
influenza vaccine; intranasal vaccine; Lactococcus lactis GEM particles
4.  Intranasal Delivery of Influenza Subunit Vaccine Formulated with GEM Particles as an Adjuvant 
The AAPS Journal  2010;12(2):109-116.
Nasal administration of influenza vaccine has the potential to facilitate influenza control and prevention. However, when administered intranasally (i.n.), commercially available inactivated vaccines only generate systemic and mucosal immune responses if strong adjuvants are used, which are often associated with safety problems. We describe the successful use of a safe adjuvant Gram-positive enhancer matrix (GEM) particles derived from the food-grade bacterium Lactococcus lactis for i.n. vaccination with subunit influenza vaccine in mice. It is shown that simple admixing of the vaccine with the GEM particles results in a strongly enhanced immune response. Already after one booster, the i.n. delivered GEM subunit vaccine resulted in hemagglutination inhibition titers in serum at a level equal to the conventional intramuscular (i.m.) route. Moreover, i.n. immunization with GEM subunit vaccine elicited superior mucosal and Th1 skewed immune responses compared to those induced by i.m. and i.n. administered subunit vaccine alone. In conclusion, GEM particles act as a potent adjuvant for i.n. influenza immunization.
doi:10.1208/s12248-009-9168-2
PMCID: PMC2844513  PMID: 20058113
influenza vaccine; intranasal vaccine; Lactococcus lactis GEM particles
5.  Novel Surface Display System for Proteins on Non-Genetically Modified Gram-Positive Bacteria 
A novel display system is described that allows highly efficient immobilization of heterologous proteins on bacterial surfaces in applications for which the use of genetically modified bacteria is less desirable. This system is based on nonliving and non-genetically modified gram-positive bacterial cells, designated gram-positive enhancer matrix (GEM) particles, which are used as substrates to bind externally added heterologous proteins by means of a high-affinity binding domain. This binding domain, the protein anchor (PA), was derived from the Lactococcus lactis peptidoglycan hydrolase AcmA. GEM particles were typically prepared from the innocuous bacterium L. lactis, and various parameters for the optimal preparation of GEM particles and binding of PA fusion proteins were determined. The versatility and flexibility of the display and delivery technology were demonstrated by investigating enzyme immobilization and nasal vaccine applications.
doi:10.1128/AEM.72.1.880-889.2006
PMCID: PMC1352190  PMID: 16391130

Results 1-5 (5)