Search tips
Search criteria

Results 1-25 (58)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  SEDFIT-MSTAR: Molecular weight and molecular weight distribution analysis of polymers by sedimentation equilibrium in the ultracentrifuge 
The Analyst  2013;139(1):79-92.
Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure – which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system) a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ–carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in “point” average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution.
PMCID: PMC4064941  PMID: 24244936
2.  Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT  
Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented.
Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysical techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design.
PMCID: PMC4304681  PMID: 25615855
3.  Malaria vaccine candidate: design of a multivalent subunit α-helical coiled coil poly-epitope 
Vaccine  2011;29(40):7090-7099.
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
PMCID: PMC4165486  PMID: 21803099
4.  NBD-labelled phospholipid accelerates apolipoprotein C-II amyloid fibril formation but is not incorporated into mature fibrils 
Biochemistry  2011;50(44):9579-9586.
Human apolipoprotein (apo) C-II is one of several lipid-binding proteins that self-assemble into fibrils and accumulate in disease-related amyloid deposits. A general characteristic of these amyloid deposits is the presence of lipids, known to modulate individual steps in amyloid fibril formation. ApoC-II fibril formation is activated by sub-micellar phospholipids but inhibited by micellar lipids. We examined the mechanism for the activation by sub-micellar lipids using the fluorescently-labelled, short-chain phospholipid, 1-dodecyl-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-2-hydroxy-glycero-3-phosphocholine (NBD-lyso-12-PC). Addition of submicellar NBD-lyso-12-PC increased the rate of fibril formation by apoC-II approximately two-fold. Stopped flow kinetic analysis using fluorescence detection and low, non-fibril forming concentrations of apoC-II indicated NBD-Lyso-12-PC binds rapidly, in the millisecond timescale, followed by the slower formation of discrete apoC-II tetramers. Sedimentation velocity analysis showed NBD-Lyso-12-PC binds to both apoC-II monomers and tetramers at approximately 5 sites per monomer with an average dissociation constant of approximately 10 μM. Mature apoC-II fibrils formed in the presence of NBD-Lyso-12-PC were devoid of lipid indicating a purely catalytic role for sub-micellar lipids in the activation of apoC-II fibril formation. These studies demonstrate the catalytic potential of small amphiphilic molecules to control protein folding and fibril assembly pathways.
PMCID: PMC4157729  PMID: 21985034
5.  An equilibrium model for linear and closed-loop amyloid fibril formation 
Journal of molecular biology  2012;421(0):364-377.
Amyloid fibrils and their soluble oligomeric intermediates are implicated in several age-related diseases including Alzheimer’s and Parkinson’s disease. The distribution of oligomers and fibrils is related to toxicity and is dependent on the pathways for fibril assembly, generally considered to occur via a slow nucleation step that precedes fibril elongation. Human apolipoprotein (apo) C-II forms amyloid fibrils via a reversible self-assembly process accompanied by closed-loop formation and fibril breaking and joining. Our fluorescence quenching and sedimentation velocity experiments with Alexa488-labelled apoC-II indicated a time-dependent sub-unit interchange for both linear and closed-loop fibrils, while dilution experiments using mature fibrils indicated a shift to smaller size distributions consistent with a reversible assembly pathway. To account for this behaviour we developed an equilibrium self-association model that describes the final size distributions of apoC-II fibrils formed at different starting concentrations. The model proposes a reversible isomerisation of apoC-II monomer to form an active conformer that self-assembles into fibrils via an isodesmic self-association pathway coupled to fibril length-dependent closed-loop formation. The model adequately described fibril size distributions and the proportion of closed-loops as a function of total apoC-II concentration over the concentration range 0.1–0.5 mg/ml. Extension of the model to include the rates of isomerisation, self-association and fibril breaking and joining provided satisfactory global fits to kinetic data on fibril formation and changes in average fibril size at different apoC-II starting concentrations. The model provides a simple thermodynamic description of the processes governing the size distribution of apoC-II fibrils at equilibrium and the formation of discrete oligomeric intermediates.
PMCID: PMC4157730  PMID: 22370559
6.  Improving the Thermal, Radial and Temporal Accuracy of the Analytical Ultracentrifuge through External References 
Analytical biochemistry  2013;440(1):10.1016/j.ab.2013.05.011.
Sedimentation velocity (SV) is a method based on first-principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton® temperature logger to directly measure the temperature of a spinning rotor, and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration, which were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., doi 10.1016/j.ab.2013.02.011) and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from eleven instruments displayed a significantly reduced standard deviation of ∼ 0.7 %. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard.
PMCID: PMC3826449  PMID: 23711724
sedimentation velocity; sedimentation equilibrium; hydrodynamic modeling
7.  Human Herpesvirus 7 U21 Tetramerizes To Associate with Class I Major Histocompatibility Complex Molecules 
Journal of Virology  2014;88(6):3298-3308.
The U21 gene product from human herpesvirus 7 binds to and redirects class I major histocompatibility complex (MHC) molecules to a lysosomal compartment. The molecular mechanism by which U21 reroutes class I MHC molecules to lysosomes is not known. Here, we have reconstituted the interaction between purified soluble U21 and class I MHC molecules, suggesting that U21 does not require additional cellular proteins to interact with class I MHC molecules. Our results demonstrate that U21, itself predicted to contain an MHC class I-like protein fold, interacts tightly with class I MHC molecules as a tetramer, in a 4:2 stoichiometry. These observations have helped to elucidate a refined model describing the mechanism by which U21 escorts class I MHC molecules to the lysosomal compartment.
IMPORTANCE In this report, we show that the human herpesvirus 7 (HHV-7) immunoevasin U21, itself a class I MHC-like protein, binds with high affinity to class I MHC molecules as a tetramer and escorts them to lysosomes, where they are degraded. While many class I MHC-like molecules have been described in detail, this unusual viral class I-like protein functions as a tetramer, associating with class I MHC molecules in a 4:2 ratio, illuminating a functional significance of homooligomerization of a class I MHC-like protein.
PMCID: PMC3957921  PMID: 24390327
8.  The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing 
This chapter presents an introduction to the kinetic analysis of SPR biosensor data for the determination of affinity and kinetic rate constants of biomolecular interactions between an immobilized and a soluble binding partner. The need to be aware of and critically tests the assumptions underlying the analysis models is emphasized and the consequences for the experimental design are discussed. The two most common sources of deviation in SPR surface binding kinetics from the ideal pseudo-first order binding kinetics of bimolecular reactions are mass transport limitations and the heterogeneity of the surface sites. These problems are intrinsic to the use of a biosensor surface for characterizing interactions. The effect of these factors on the observed binding kinetics, and strategies to account for them are reviewed, both in the context of mathematical data analysis, as well as the design of the experiments and controls.
PMCID: PMC4134667  PMID: 20217612
binding kinetics; affinity distribution; thermodynamics; mass transport limitation; surface binding; optical biosensor; Tikhonov regularization
9.  Analytical Ultracentrifugation as a Tool for Studying Protein Interactions 
Biophysical reviews  2013;5(2):10.1007/s12551-013-0106-2.
The last two decades have led to significant progress in the field of analytical ultracentrifugation driven by instrumental, theoretical, and computational methods. This review will highlight key developments in sedimentation equilibrium (SE) and sedimentation velocity (SV) analysis. For SE, this includes the analysis of tracer sedimentation equilibrium at high concentrations with strong thermodynamic non-ideality, and for ideally interacting systems the development of strategies for the analysis of heterogeneous interactions towards global multi-signal and multi-speed SE analysis with implicit mass conservation. For SV, this includes the development and applications of numerical solutions of the Lamm equation, noise decomposition techniques enabling direct boundary fitting, diffusion deconvoluted sedimentation coefficient distributions, and multi-signal sedimentation coefficient distributions. Recently, effective particle theory has uncovered simple physical rules for the co-migration of rapidly exchanging systems of interacting components in SV. This has opened new possibilities for the robust interpretation of the boundary patterns of heterogeneous interacting systems. Together, these SE and SV techniques have led to new approaches to study macromolecular interactions across the entire the spectrum of affinities, including both attractive and repulsive interactions, in both dilute and highly concentrated solutions, which can be applied to single-component solutions of self-associating proteins as well as the study of multi-protein complex formation in multi-component solutions.
PMCID: PMC3652485  PMID: 23682298
sedimentation equilibrium; sedimentation velocity; multi-protein complexes; multi-signal analysis; global analysis; effective particle theory
10.  Recorded Scan Times Can Limit the Accuracy of Sedimentation Coefficients in Analytical Ultracentrifugation 
Analytical biochemistry  2013;437(1):104-108.
We report systematic and large inaccuracies in the recorded elapsed time in data files from the analytical ultracentrifuge, leading to overestimates of the sedimentation coefficients of up to 10%. This far exceeds previously considered factors contributing to the uncertainty in this parameter, and has significant ramifications for derived parameters, such as hydrodynamic shape and molar mass estimates. The source of this error is at present unknown, but we found it to be quantitatively consistent across different instruments, increasing with rotor speed. Furthermore, its occurrence appears to correlate with the use of the latest data acquisition software from the manufacturer, in use in some of our laboratories for nearly two years. Many of the recently published sedimentation coefficients may need to be re-examined. The problem can be easily recognized by comparing the file time-stamps provided by the operating system with the elapsed scan times recorded within the data files. We therefore implemented a routine in SEDFIT that can automatically examine the data files, alert the user to significant discrepancies, and correct the scan times accordingly. This eliminates errors in the recorded scan times.
PMCID: PMC3676908  PMID: 23458356
sedimentation velocity; hydrodynamic modeling
11.  Multipoint Binding of the SLP-76 SH2 Domain to ADAP Is Critical for Oligomerization of SLP-76 Signaling Complexes in Stimulated T Cells 
Molecular and Cellular Biology  2013;33(21):4140-4151.
The adapter molecules SLP-76 and LAT play central roles in T cell activation by recruiting enzymes and other adapters into multiprotein complexes that coordinate highly regulated signal transduction pathways. While many of the associated proteins have been characterized, less is known concerning the mechanisms of assembly for these dynamic and potentially heterogeneous signaling complexes. Following T cell receptor (TCR) stimulation, SLP-76 is found in structures called microclusters, which contain many signaling complexes. Previous studies showed that a mutation to the SLP-76 C-terminal SH2 domain nearly abolished SLP-76 microclusters, suggesting that the SH2 domain facilitates incorporation of signaling complexes into microclusters. S. C. Bunnell, A. L. Singer, D. I. Hong, B. H. Jacque, M. S. Jordan, M. C. Seminario, V. A. Barr, G. A. Koretzky, and L. E. Samelson, Mol. Cell. Biol., 26:7155–7166, 2006). Using biophysical methods, we demonstrate that the adapter, ADAP, contains three binding sites for SLP-76, and that multipoint binding to ADAP fragments oligomerizes the SLP-76 SH2 domain in vitro. These results were complemented with confocal imaging and functional studies of cells expressing ADAP with various mutations. Our results demonstrate that all three binding sites are critical for SLP-76 microcluster assembly, but any combination of two sites will partially induce microclusters. These data support a model whereby multipoint binding of SLP-76 to ADAP facilitates the assembly of SLP-76 microclusters. This model has implications for the regulation of SLP-76 and LAT microclusters and, as a result, T cell signaling.
PMCID: PMC3811887  PMID: 23979596
12.  Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity 
Analytical Chemistry  2014;86(6):3181-3187.
The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies.
PMCID: PMC3988680  PMID: 24552356
13.  A comparison of binding surfaces for SPR biosensing using an antibody-antigen system and affinity distribution analysis 
Methods (San Diego, Calif.)  2012;59(3):10.1016/j.ymeth.2012.12.007.
The application of optical biosensors in the study of macromolecular interactions requires immobilization of one binding partner to the surface. It is often highly desirable that the immobilization is uniform and does not affect the thermodynamic and kinetic binding parameters to soluble ligands. To achieve this goal, a variety of sensor surfaces, coupling strategies and surface chemistries are available. Previously, we have introduced a technique for increasing the level of detail on the immobilized sites beyond an average affinity by determining the distribution of affinities and kinetic rate constants from families of binding and dissociation traces acquired at different concentrations of soluble ligand. In the present work, we explore how this affinity distribution analysis can be useful in the assessment and optimization of surface immobilization. With this goal, using an antibody-antigen interaction as a model system, we study the activity, thermodynamic and kinetic binding parameters, and heterogeneity of surface sites produced with different commonly used sensor surfaces, at different total surface densities and with direct immobilization or affinity capture.
PMCID: PMC3840496  PMID: 23270815
14.  A Structural Framework for a Near-Minimal Form of Life: Mass and Compositional Analysis of the Helical Mollicute Spiroplasma melliferum BC3 
PLoS ONE  2014;9(2):e87921.
Spiroplasma melliferum is a wall-less bacterium with dynamic helical geometry. This organism is geometrically well defined and internally well ordered, and has an exceedingly small genome. Individual cells are chemotactic, polar, and swim actively. Their dynamic helicity can be traced at the molecular level to a highly ordered linear motor (composed essentially of the proteins fib and MreB) that is positioned on a defined helical line along the internal face of the cell’s membrane. Using an array of complementary, informationally overlapping approaches, we have taken advantage of this uniquely simple, near-minimal life-form and its helical geometry to analyze the copy numbers of Spiroplasma’s essential parts, as well as to elucidate how these components are spatially organized to subserve the whole living cell. Scanning transmission electron microscopy (STEM) was used to measure the mass-per-length and mass-per-area of whole cells, membrane fractions, intact cytoskeletons and cytoskeletal components. These local data were fit into whole-cell geometric parameters determined by a variety of light microscopy modalities. Hydrodynamic data obtained by analytical ultracentrifugation allowed computation of the hydration state of whole living cells, for which the relative amounts of protein, lipid, carbohydrate, DNA, and RNA were also estimated analytically. Finally, ribosome and RNA content, genome size and gene expression were also estimated (using stereology, spectroscopy and 2D-gel analysis, respectively). Taken together, the results provide a general framework for a minimal inventory and arrangement of the major cellular components needed to support life.
PMCID: PMC3931623  PMID: 24586297
15.  Current Methods in Sedimentation Velocity and Sedimentation Equilibrium Analytical Ultracentrifugation 
Significant progress in the interpretation of analytical ultracentrifugation (AUC) data in the last decade has led to profound changes in the practice of AUC, both for sedimentation velocity (SV) and sedimentation equilibrium (SE). Modern computational strategies have allowed for the direct modeling of the sedimentation process of heterogeneous mixtures, resulting in SV size-distribution analyses with significantly improved detection limits and strongly enhanced resolution. These advances have transformed the practice of SV, rendering it the primary method of choice for most existing applications of AUC, such as the study of protein self- and hetero-association, the study of membrane proteins, and applications in biotechnology. New global multi-signal modeling and mass conservation approaches in SV and SE, in conjunction with the effective-particle framework for interpreting the sedimentation boundary structure of interacting systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to experimental data, have led to more robust and more powerful strategies for the study of reversible protein interactions and multi-protein complexes. Furthermore, modern mathematical modeling capabilities have allowed for a detailed description of many experimental aspects of the acquired data, thus enabling novel experimental opportunities, with important implications for both sample preparation and data acquisition. The goal of the current commentary is to supplement previous AUC protocols, Current Protocols in Protein Science 20.3 (1999) and 20.7 (2003), and 7.12 (2008), and provide an update describing the current tools for the study of soluble proteins, detergent-solubilized membrane proteins and their interactions by SV and SE.
PMCID: PMC3652391  PMID: 23377850
sedimentation equilibrium; sedimentation velocity; chemical equilibria; reversible interaction; size-distribution; multi-protein complex; analytical ultracentrifugation; protein hydrodynamics
16.  A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly 
Nature  2013;496(7445):377-381.
A hallmark of histone H3 lysine 9 (H3K9) methylated heterochromatin, conserved from fission yeast,Schizosaccharomyces pombe (S. pombe), to humans, is its ability to spread to adjacent genomic regions1–6. Central to heterochromatin spread is the heterochromatin protein 1 (HP1), which recognizes H3K9 methylated chromatin, oligomerizes, and forms a versatile platform that participates in diverse nuclear functions, ranging from gene silencing to chromosome segregation1–6. How HP1 proteins assemble on methylated nucleosomal templates and how the HP1-nucleosome complex achieves functional versatility remain poorly understood. Here, we show that binding of the major S. pombe HP1 protein, Swi6, to methylated nucleosomes drives a switch from an auto-inhibited state to a spreading competent state. In the auto-inhibited state, a histone mimic sequence in one Swi6 monomer blocks methyl mark recognition by the chromodomain of another monomer. Auto-inhibition is relieved by recognition of two template features, the H3K9 methyl mark and nucleosomal DNA. Cryo-Electron Microscopy (EM) based reconstruction of the Swi6-nucleosome complex provides the overall architecture of the spreading-competent state in which two unbound chromodomain sticky ends appear exposed. Disruption of the switch between the auto-inhibited and spreading competent state disrupts heterochromatin assembly and gene silencing in vivo. These findings are reminiscent of other conditionally activated polymerization processes, such as actin nucleation, and open up a new class of regulatory mechanisms that operate on chromatin in vivo.
PMCID: PMC3907283  PMID: 23485968
17.  Analysis of High Affinity Self-Association by Fluorescence Optical Sedimentation Velocity Analytical Ultracentrifugation of Labeled Proteins: Opportunities and Limitations 
PLoS ONE  2013;8(12):e83439.
Sedimentation velocity analytical ultracentrifugation (SV) is a powerful first-principle technique for the study of protein interactions, and allows a rigorous characterization of binding stoichiometry and affinities. A recently introduced commercial fluorescence optical detection system (FDS) permits analysis of high-affinity interactions by SV. However, for most proteins the attachment of an extrinsic fluorophore is an essential prerequisite for analysis by FDS-SV. Using the glutamate receptor GluA2 amino terminal domain as a model system for high-affinity homo-dimerization, we demonstrate how the experimental design and choice of fluorescent label can impact both the observed binding constants as well as the derived hydrodynamic parameter estimates for the monomer and dimer species. Specifically, FAM (5,6-carboxyfluorescein) was found to create different populations of artificially high-affinity and low-affinity dimers, as indicated by both FDS-SV and the kinetics of dimer dissociation studied using a bench-top fluorescence spectrometer and Förster Resonance Energy Transfer. By contrast, Dylight488 labeled GluA2, as well as GluA2 expressed as an EGFP fusion protein, yielded results consistent with estimates for unlabeled GluA2. Our study suggests considerations for the choice of labeling strategies, and highlights experimental designs that exploit specific opportunities of FDS-SV for improving the reliability of the binding isotherm analysis of interacting systems.
PMCID: PMC3866193  PMID: 24358283
18.  Complexes of Neutralizing and Non-Neutralizing Affinity Matured Fabs with a Mimetic of the Internal Trimeric Coiled-Coil of HIV-1 gp41 
PLoS ONE  2013;8(11):e78187.
A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)3 or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen design.
PMCID: PMC3820714  PMID: 24244293
19.  Global Multi-Method Analysis of Affinities and Cooperativity in Complex Systems of Macromolecular Interactions 
Analytical chemistry  2012;84(21):9513-9519.
Cooperativity, multi-site and multi-component interactions are hallmarks of biological systems of interacting macromolecules. Their thermodynamic characterization is often very challenging due to the notoriously low information content of binding isotherms. We introduce a strategy for the global multi-method analysis of data from multiple techniques (GMMA) that exploits enhanced information content emerging from the mutual constraints of the simultaneous modeling of orthogonal observables from calorimetric, spectroscopic, hydrodynamic, biosensing, or other thermodynamic binding experiments. We describe new approaches to address statistical problems that arise in the analysis of dissimilar data sets. The GMMA approach can significantly increase the complexity of interacting systems that can be accurately thermodynamically characterized.
PMCID: PMC3491091  PMID: 23020071
binding energetics; protein interactions; cooperativity; isothermal titration microcalorimetry; surface plasmon resonance biosensing; analytical ultracentrifugation; global analysis
20.  Tools for the Quantitative Analysis of Sedimentation Boundaries Detected by Fluorescence Optical Analytical Ultracentrifugation 
PLoS ONE  2013;8(10):e77245.
Fluorescence optical detection in sedimentation velocity analytical ultracentrifugation allows the study of macromolecules at nanomolar concentrations and below. This has significant promise, for example, for the study of systems of high-affinity protein interactions. Here we describe adaptations of the direct boundary modeling analysis approach implemented in the software SEDFIT that were developed to accommodate unique characteristics of the confocal fluorescence detection system. These include spatial gradients of signal intensity due to scanner movements out of the plane of rotation, temporal intensity drifts due to instability of the laser and fluorophores, and masking of the finite excitation and detection cone by the sample holder. In an extensive series of experiments with enhanced green fluorescent protein ranging from low nanomolar to low micromolar concentrations, we show that the experimental data provide sufficient information to determine the parameters required for first-order approximation of the impact of these effects on the recorded data. Systematic deviations of fluorescence optical sedimentation velocity data analyzed using conventional sedimentation models developed for absorbance and interference optics are largely removed after these adaptations, resulting in excellent fits that highlight the high precision of fluorescence sedimentation velocity data, thus allowing a more detailed quantitative interpretation of the signal boundaries that is otherwise not possible for this system.
PMCID: PMC3799624  PMID: 24204779
21.  Strategies for assessing proton linkage to bimolecular interactions by global analysis of isothermal titration calorimetry data 
Isothermal titration calorimetry (ITC) is a traditional and powerful method for studying the linkage of ligand binding to proton uptake or release. The theoretical framework has been developed for more than two decades and numerous applications have appeared. In the current work, we explored strategic aspects of experimental design. To this end, we simulated families of ITC data sets that embed different strategies with regard to the number of experiments, range of experimental pH, buffer ionization enthalpy, and temperature. We then re-analyzed the families of data sets in the context of global analysis, employing a proton linkage binding model implemented in the global data analysis platform SEDPHAT, and examined the information content of all data sets by a detailed statistical error analysis of the parameter estimates. In particular, we studied the impact of different assumptions about the knowledge of the exact concentrations of the components, which in practice presents an experimental limitation for many systems. For example, the uncertainty in concentration may reflect imperfectly known extinction coefficients and stock concentrations or may account for different extents of partial inactivation when working with proteins at different pH values. Our results show that the global analysis can yield reliable estimates of the thermodynamic parameters for intrinsic binding and protonation, and that in the context of the global analysis the exact molecular component concentrations may not be required. Additionally, a comparison of data from different experimental strategies illustrates the benefit of conducting experiments at a range of temperatures.
PMCID: PMC3388511  PMID: 22773848
protein interactions; thermodynamics; proton linkage; isothermal titration calorimetry; global analysis; SEDPHAT
22.  Structural and thermodynamic characterization of the interaction between two periplasmic Treponema pallidum lipoproteins that are components of a TPR-protein-associated TRAP transporter (TPAT) 
Journal of Molecular Biology  2012;420(1-2):70-86.
Tripartite ATP-independent periplasmic transporters (TRAP-Ts) are bacterial transport systems that have been implicated in the import of small molecules into the cytoplasm. A newly discovered subfamily of TRAP-Ts (TPATs) has four components. Three are common to both TRAP-Ts and TPATs: the P component, a ligand-binding protein, and a transmembrane symporter apparatus comprising the M and Q components (M and Q are sometimes fused to form a single polypeptide). TPATs are distinguished from TRAP-Ts by the presence of a unique protein called the “T component”. In Treponema pallidum, this protein (TatT) is a water-soluble trimer whose protomers are each perforated by a pore. Its respective P component (TatPT) interacts with the TatT in vitro and in vivo. In this work, we further characterized this interaction. Co-crystal structures of two complexes between the two proteins confirm that up to three monomers of TatPT can bind to the TatT trimer. A putative ligand-binding cleft of TatPT aligns with the pore of TatT, strongly suggesting ligand transfer between T and PT. We used a combination of site-directed mutagenesis and analytical ultracentrifugation to derive thermodynamic parameters for the interactions. These observations confirm that the observed crystallographic interface is recapitulated in solution. These results prompt a hypothesis of the molecular mechanism(s) of hydrophobic ligand transport by the TPATs.
PMCID: PMC3367087  PMID: 22504226
TRAP transporter; syphilis; Treponema pallidum; TPR motif; protein interactions; lipoproteins; SBPs; TPAT
23.  High-Precision Isothermal Titration Calorimetry with Automated Peak Shape Analysis 
Analytical Chemistry  2012;84(11):5066-5073.
Isothermal titration calorimetry (ITC) is a powerful classical method that enables researchers in many fields to study the thermodynamics of molecular interactions. Primary ITC data comprise the temporal evolution of differential power reporting the heat of reaction during a series of injections of aliquots of a reactant into a sample cell. By integration of each injection peak, an isotherm can be constructed of total changes in enthalpy as a function of changes in solution composition, which is rich in thermodynamic information on the reaction. However, the signals from the injection peaks are superimposed by the stochastically varying time-course of the instrumental baseline power, limiting the precision of ITC isotherms. Here, we describe a method for automated peak assignment based on peak-shape analysis via singular value decomposition in combination with detailed least-squares modeling of local pre- and post-injection baselines. This approach can effectively filter out contributions of short-term noise and adventitious events in the power trace. This method also provides, for the first time, statistical error estimates for the individual isotherm data points. In turn, this results in improved detection limits for high-affinity or low-enthalpy binding reactions and significantly higher precision of the derived thermodynamic parameters.
PMCID: PMC3389189  PMID: 22530732
isothermal titration microcalorimetry; singular value decomposition; protein interactions; binding enthalpy
25.  Multi-Signal Sedimentation Velocity Analysis with Mass Conservation for Determining the Stoichiometry of Protein Complexes 
PLoS ONE  2013;8(5):e62694.
Multi-signal sedimentation velocity analytical ultracentrifugation (MSSV) is a powerful tool for the determination of the number, stoichiometry, and hydrodynamic shape of reversible protein complexes in two- and three-component systems. In this method, the evolution of sedimentation profiles of macromolecular mixtures is recorded simultaneously using multiple absorbance and refractive index signals and globally transformed into both spectrally and diffusion-deconvoluted component sedimentation coefficient distributions. For reactions with complex lifetimes comparable to the time-scale of sedimentation, MSSV reveals the number and stoichiometry of co-existing complexes. For systems with short complex lifetimes, MSSV reveals the composition of the reaction boundary of the coupled reaction/migration process, which we show here may be used to directly determine an association constant. A prerequisite for MSSV is that the interacting components are spectrally distinguishable, which may be a result, for example, of extrinsic chromophores or of different abundances of aromatic amino acids contributing to the UV absorbance. For interacting components that are spectrally poorly resolved, here we introduce a method for additional regularization of the spectral deconvolution by exploiting approximate knowledge of the total loading concentrations. While this novel mass conservation principle does not discriminate contributions to different species, it can be effectively combined with constraints in the sedimentation coefficient range of uncomplexed species. We show in theory, computer simulations, and experiment, how mass conservation MSSV as implemented in SEDPHAT can enhance or even substitute for the spectral discrimination of components. This should broaden the applicability of MSSV to the analysis of the composition of reversible macromolecular complexes.
PMCID: PMC3656001  PMID: 23696787

Results 1-25 (58)