PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Challenges and Opportunities in Establishing Scientific and Regulatory Standards for Assuring Therapeutic Equivalence of Modified Release Products: Workshop Summary Report 
The AAPS Journal  2010;12(3):371-377.
Modified release products are complex dosage forms designed to release drug in a controlled manner to achieve desired efficacy and safety. Inappropriate control of drug release from such products may result in reduced efficacy or increased toxicity. This workshop provided an opportunity for pharmaceutical scientists from academia, industry, and regulatory agencies to discuss current industry practices and regulatory expectations for demonstrating pharmaceutical equivalence and bioequivalence of MR products, further facilitating the establishment of regulatory standards for ensuring therapeutic equivalence of these products.
doi:10.1208/s12248-010-9201-5
PMCID: PMC2895434  PMID: 20440588
bioequivalence; interchangeability; modified release; pharmaceutical equivalence; therapeutic equivalence
2.  Pharmacokinetic profile of a 24-hour controlled-release OROS® formulation of hydromorphone in the presence and absence of food 
Background
The objective of this study was to compare the pharmacokinetic profile of a novel, once-daily, controlled-release formulation of hydromorphone (OROS® hydromorphone) under fasting conditions with that immediately after a high-fat breakfast in healthy volunteers. The effect of the opioid antagonist naltrexone on fasting hydromorphone pharmacokinetics also was evaluated.
Methods
In an open-label, three-way, crossover study, 30 healthy volunteers were randomized to receive a single dose of 16 mg OROS® hydromorphone under fasting conditions, 16 mg OROS® hydromorphone under fed conditions, or 16 mg OROS® hydromorphone under fasting conditions with a naltrexone 50-mg block. Plasma samples taken pre-dose and at regular intervals up to 48 hours post-dose were assayed for hydromorphone concentrations. Analysis of variance was performed on log-transformed data; for mean ratios of 0.8 to 1.2 (20%), differences were considered minimal. Bioequivalence was reached if 90% confidence intervals (CI) of treatment mean ratios were between 80% and 125%.
Results
The mean geometric ratios of the fed and fasting treatment groups for maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC0-t; AUC0-∞) were within 20%. Confidence intervals were within 80% to 125% for AUC0-t and AUC0-∞ but were slightly higher for Cmax (105.9% and 133.3%, respectively). With naltrexone block, the hydromorphone Cmax increased by 39% and the terminal half-life decreased by 4.5 hours. There was no significant change in Tmax, AUC0-t or AUC0-∞.
Conclusion
Standard bioavailability measures show minimal effect of food on the bioavailability of hydromorphone from OROS® hydromorphone. Naltrexone co-administration results in a slight increase in the rate of absorption but not the extent of absorption.
Trial Registration
Clinical Trials.gov NCT00399295
doi:10.1186/1472-6904-7-2
PMCID: PMC1810515  PMID: 17270055
3.  Pharmacokinetic investigation of dose proportionality with a 24-hour controlled-release formulation of hydromorphone 
Background
The purpose of this study was investigate the dose proportionality of a novel, once-daily, controlled-release formulation of hydromorphone that utilizes the OROS® Push-Pull™ osmotic pump technology.
Methods
In an open-label, four-way, crossover study, 32 healthy volunteers were randomized to receive a single dose of OROS® hydromorphone 8, 16, 32, and 64 mg, with a 7-day washout period between treatments. Opioid antagonism was provided by three or four doses of naltrexone 50 mg, given at 12-hour intervals pre- and post-OROS® hydromorphone dosing. Plasma samples for pharmacokinetic analysis were collected pre-dose and at regular intervals up to 48 hours post-dose (72 hours for the 64-mg dose), and were assayed for hydromorphone concentration to determine peak plasma concentration (Cmax), time at which peak plasma concentration was observed (Tmax), terminal half-life (t1/2), and area under the concentration-time curve for zero to time t (AUC0-t) and zero to infinity (AUC0–∞). An analysis of variance (ANOVA) model on untransformed and dose-normalized data for AUC0-t, AUC0–∞, and Cmax was used to establish dose linearity and proportionality.
Results
The study was completed by 31 of 32 subjects. Median Tmax (12.0–16.0 hours) and mean t1/2 (10.6–11.0 hours) were found to be independent of dose. Regression analyses of Cmax, AUC0–48, and AUC0–∞ by dose indicated that the relationship was linear (slope, P ≤ 0.05) and that the intercept did not differ significantly from zero (P > 0.05). Similar analyses with dose-normalized parameters also indicated that the slope did not differ significantly from zero (P > 0.05).
Conclusion
The pharmacokinetics of OROS® hydromorphone are linear and dose proportional for the 8, 16, 32, and 64 mg doses.
Trial Registration
Clinical Trials.gov NCT00398957
doi:10.1186/1472-6904-7-3
PMCID: PMC1808051  PMID: 17270058
4.  Population Pharmacodynamics of IPX066: An Oral Extended-Release Capsule Formulation of Carbidopa–Levodopa, and Immediate-Release Carbidopa–Levodopa in Patients With Advanced Parkinson’s Disease 
Journal of Clinical Pharmacology  2013;53(5):523-531.
A pharmacodynamic model is presented to describe the motor effects (tapping rate, Unified Parkinson’s Disease Rating Scale [UPDRS] Part III, and investigator-rating of ON/OFF, including dyskinesia) of levodopa (LD) in patients with advanced idiopathic Parkinson’s disease (PD) treated with immediate-release (IR) carbidopa–levodopa (CD–LD) or an extended-release (ER) formulation of CD–LD (IPX066). Twenty-seven patients participated in this open-label, randomized, single-and multiple-dose, crossover study. The pharmacodynamic models included a biophase effect site with a sigmoid Emax transduction for tapping and UPDRS and an ordered categorical model for dyskinesia. The pharmacodynamics of LD was characterized by a conduction function with a half-life of 0.59 hours for tapping rate, and 0.4 hours for UPDRS Part III and dyskinesia. The LD concentration for half-maximal effect was 1530 ng/mL, 810 ng/mL, and 600 ng/mL for tapping rate, UPDRS Part III, and dyskinesia, respectively. The sigmoidicity of the transduction was 1.53, 2.5, and 2.1 for tapping rate, UPDRS Part III, and dyskinesia, respectively. External validation of the pharmacodynamic model using tapping rate indicated good performance of the model.
doi:10.1002/jcph.63
PMCID: PMC3798100  PMID: 23426902
IPX066; levodopa; Parkinson’s disease; pharmacodynamics

Results 1-4 (4)