Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Inhibition of Fatty Acid Binding Proteins Elevates Brain Anandamide Levels and Produces Analgesia 
PLoS ONE  2014;9(4):e94200.
The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s) that contributes to the antinociceptive effects of FABP inhibitors.
Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.
PMCID: PMC3976407  PMID: 24705380
2.  Role of FAAH-Like Anandamide Transporter in Anandamide Inactivation 
PLoS ONE  2013;8(11):e79355.
The endocannabinoid system modulates numerous physiological processes including nociception and reproduction. Anandamide (AEA) is an endocannabinoid that is inactivated by cellular uptake followed by intracellular hydrolysis by fatty acid amide hydrolase (FAAH). Recently, FAAH-like anandamide transporter (FLAT), a truncated and catalytically-inactive variant of FAAH, was proposed to function as an intracellular AEA carrier and mediate its delivery to FAAH for hydrolysis. Pharmacological inhibition of FLAT potentiated AEA signaling and produced antinociceptive effects. Given that endocannabinoids produce analgesia through central and peripheral mechanisms, the goal of the current work was to examine the expression of FLAT in the central and peripheral nervous systems. In contrast to the original report characterizing FLAT, expression of FLAT was not observed in any of the tissues examined. To investigate the role of FLAT as a putative AEA binding protein, FLAT was generated from FAAH using polymerase chain reaction and further analyzed. Despite its low cellular expression, FLAT displayed residual catalytic activity that was sensitive to FAAH inhibitors and abolished following mutation of its catalytic serine. Overexpression of FLAT potentiated AEA cellular uptake and this appeared to be dependent upon its catalytic activity. Immunofluorescence revealed that FLAT localizes primarily to intracellular membranes and does not contact the plasma membrane, suggesting that its capability to potentiate AEA uptake may stem from its enzymatic rather than transport activity. Collectively, our data demonstrate that FLAT does not serve as a global intracellular AEA carrier, although a role in mediating localized AEA inactivation in mammalian tissues cannot be ruled out.
PMCID: PMC3817039  PMID: 24223930
3.  Anandamide Externally Added to Lipid Vesicles Containing-Trapped Fatty Acid Amide Hydrolase (FAAH) Is Readily Hydrolyzed in a Sterol-Modulated Fashion 
ACS Chemical Neuroscience  2012;3(5):364-368.
We show that anandamide (AEA) externally added to model membrane vesicles containing trapped fatty acid amide hydrolyase (FAAH) can be readily hydrolyzed, demonstrating facile, rapid anandamide movement across the lipid bilayer. The rate of hydrolysis is significantly facilitated by cholesterol and coprostanol, but not by cholesterol sulfate. The effects of sterol upon hydrolysis by FAAH bound to the outer surface of the bilayer were much smaller, although they followed the same pattern. We propose the facilitation of hydrolysis is a combination of the effects of sterol on accessibility of membrane-inserted endocannabinoids to surface protein, and on the rate of endocannabinod transport across the membrane bilayer.
PMCID: PMC3382455  PMID: 22860204
Anandamide; liposome; LUV; transporter; fatty acid amide hydrolase; FAAH; cholesterol
4.  Targeting Fatty Acid Binding Protein (FABP) Anandamide Transporters – A Novel Strategy for Development of Anti-Inflammatory and Anti-Nociceptive Drugs 
PLoS ONE  2012;7(12):e50968.
Fatty acid binding proteins (FABPs), in particular FABP5 and FABP7, have recently been identified by us as intracellular transporters for the endocannabinoid anandamide (AEA). Furthermore, animal studies by others have shown that elevated levels of endocannabinoids resulted in beneficial pharmacological effects on stress, pain and inflammation and also ameliorate the effects of drug withdrawal. Based on these observations, we hypothesized that FABP5 and FABP7 would provide excellent pharmacological targets. Thus, we performed a virtual screening of over one million compounds using DOCK and employed a novel footprint similarity scoring function to identify lead compounds with binding profiles similar to oleic acid, a natural FABP substrate. Forty-eight compounds were purchased based on their footprint similarity scores (FPS) and assayed for biological activity against purified human FABP5 employing a fluorescent displacement-binding assay. Four compounds were found to exhibit approximately 50% inhibition or greater at 10 µM, as good as or better inhibitors of FABP5 than BMS309403, a commercially available inhibitor. The most potent inhibitor, γ-truxillic acid 1-naphthyl ester (ChemDiv 8009-2334), was determined to have Ki value of 1.19±0.01 µM. Accordingly a novel α-truxillic acid 1-naphthyl mono-ester (SB-FI-26) was synthesized and assayed for its inhibitory activity against FABP5, wherein SB-FI-26 exhibited strong binding (Ki 0.93±0.08 µM). Additionally, we found SB-FI-26 to act as a potent anti-nociceptive agent with mild anti-inflammatory activity in mice, which strongly supports our hypothesis that the inhibition of FABPs and subsequent elevation of anandamide is a promising new approach to drug discovery. Truxillic acids and their derivatives were also shown by others to have anti-inflammatory and anti-nociceptive effects in mice and to be the active component of Chinese a herbal medicine (Incarvillea sinensis) used to treat rheumatism and pain in humans. Our results provide a likely mechanism by which these compounds exert their effects.
PMCID: PMC3517626  PMID: 23236415
5.  Endocannabinoid tone versus constitutive activity of cannabinoid receptors 
British Journal of Pharmacology  2011;163(7):1329-1343.
This review evaluates the cellular mechanisms of constitutive activity of the cannabinoid (CB) receptors, its reversal by inverse agonists, and discusses the pitfalls and problems in the interpretation of the research data. The notion is presented that endogenously produced anandamide (AEA) and 2-arachidonoylglycerol (2-AG) serve as autocrine or paracrine stimulators of the CB receptors, giving the appearance of constitutive activity. It is proposed that one cannot interpret inverse agonist studies without inference to the receptors' environment vis-à-vis the endocannabinoid agonists which themselves are highly lipophilic compounds with a preference for membranes. The endocannabinoid tone is governed by a combination of synthetic pathways and inactivation involving transport and degradation. The synthesis and degradation of 2-AG is well characterized, and 2-AG has been strongly implicated in retrograde signalling in neurons. Data implicating endocannabinoids in paracrine regulation have been described. Endocannabinoid ligands can traverse the cell's interior and potentially be stored on fatty acid-binding proteins (FABPs). Molecular modelling predicts that the endocannabinoids derived from membrane phospholipids can laterally diffuse to enter the CB receptor from the lipid bilayer. Considering that endocannabinoid signalling to CB receptors is a much more likely scenario than is receptor activation in the absence of agonist ligands, researchers are advised to refrain from assuming constitutive activity except for experimental models known to be devoid of endocannabinoid ligands.
This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit
PMCID: PMC3165945  PMID: 21545414
2-arachidonoylglycerol; anandamide; constitutive activity; endocannabinoids; fatty acid-binding proteins; G protein coupled receptors; inverse agonist; lipid bilayer; signal transduction
6.  Assessment of a Spectrophotometric Assay for Monoacylglycerol Lipase Activity 
The AAPS journal  2010;12(2):197-201.
PMCID: PMC2844520  PMID: 20186507
monoacylglycerol lipase; spectrophotometric assay
7.  Assessment of a Spectrophotometric Assay for Monoacylglycerol Lipase Activity 
The AAPS Journal  2010;12(2):197-201.
PMCID: PMC2844520  PMID: 20186507
monoacylglycerol lipase; spectrophotometric assay
8.  2-Arachidonoylglycerol (2-AG) membrane transport: History and outlook 
The AAPS Journal  2006;8(2):E409-E412.
Only a few studies have addressed the transport of 2-arachidonoylglycerol (2-AG), a naturally occurring agonist for cannabinoid receptors. Based upon saturation kinetics, these early reports have proposed that 2-AG enters the cell by a specific 2-AG transporter, via the putative anandamide transporter, or by simple diffusion. In this review, the uptake of 2-AG is discussed in light of the recent advances that have been made for anandamide transport, where the mechanism appears to be rate-limited diffusion through the membrane. Endocannabinoids may be a distinct class of agonists since they are hydrophobic and neutral, exhibiting similar biophysical properties to some anesthetics that freely diffuse through the membrane.
PMCID: PMC3231572  PMID: 16808043
anandamide; 2-AG; 2-arachidonoylglycerol; cannabinoids; endocannabinoid; transport

Results 1-8 (8)