PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
3.  World Allergy Organization Study on Aerobiology for Creating First Pollen and Mold Calendar With Clinical Significance in Islamabad, Pakistan; A Project of World Allergy Organization and Pakistan Allergy, Asthma & Clinical Immunology Centre of Islamabad 
Pollen and mold allergies are highly problematic in Islamabad. This study was conducted to investigate the type and concentration of airborne pollens/molds causing allergic diseases in susceptible individuals. A volumetric spore trap (Burkard) was placed at the height of 11 m and ran continuously for 3 years. Once a week, the collecting drum was prepared by affixing Melinex tape with a double sided adhesive that was coated with a thin layer of silicone grease. Every Sunday at 9:00 AM the drum was replaced by another drum and the pollen/mold spores were removed and permanently mounted on slides. Using a microscope, the trapped particles were identified and recorded as counts per cubic meter of air per hour. From these data, the pollen and mold calendars were constructed and expressed as counts per cubic meter of air per day. Skin prick tests were performed on more than 1000 patients attending the Pakistan Allergy, Asthma & Clinical Immunology Centre of Islamabad. The results indicated that there were 2 main pollen plants that contributed to seasonal allergies. These were Broussonetia papyrifera and Cannabis sativa during the March/April season and the July/September season, respectively. Although mold spores were continuously detected throughout the year, the most prominent mold was undetected mold and unconfirmed mold species similar to Stachybotrys species, which was high from July to September/October. Two additional molds contributing to allergic reactions were Pithomyces species and Cladosporium species, which were active during January and April, with the latter also being detected between October and November. These results may prove beneficial to both patients and physicians in planning a therapeutic protocol for avoidance and amelioration.
doi:10.1097/WOX.0b013e31826421c8
PMCID: PMC3651178  PMID: 23283209
pollen and mold calendar; aerobiology; Islamabad; Burkard spore trap; Broussonetia papyrifera; Cannabis sativa; skin prick test; SPT; asthma; allergic rhinitis
4.  Kidney Bean: A Major Sensitizer among Legumes in Asthma and Rhinitis Patients from India 
PLoS ONE  2011;6(11):e27193.
Background
The prevalence of IgE mediated food allergies has increased over the last two decades. Food allergy has been reported to be fatal in highly sensitive individuals. Legumes are important food allergens but their prevalence may vary among different populations. The present study identifies sensitization to common legumes among Indian population, characterizes allergens of kidney bean and establishes its cross reactivity with other legumes.
Methodology
Patients (n = 355) with history of legume allergy were skin prick tested (SPT) with 10 legumes. Specific IgE (sIgE) and total IgE were estimated in sera by enzyme-linked immunosorbent assay. Characterization of kidney bean allergens and their cross reactivity was investigated by immunobiochemical methods. Identification of major allergens of kidney bean was carried out by mass spectrometry.
Principal Findings
Kidney bean exhibited sensitization in 78 (22.0%) patients followed by chickpea 65 (18.0%) and peanut 53 (15%). SPT positive patients depicted significantly elevated sIgE levels against different legumes (r = 0.85, p<0.0001). Sera from 30 kidney bean sensitive individuals exhibited basophil histamine release (16–54%) which significantly correlated with their SPT (r = 0.83, p<0.0001) and sIgE (r = 0.99, p<0.0001). Kidney bean showed eight major allergens of 58, 50, 45, 42, 40, 37, 34 and 18 kDa on immunoblot and required 67.3±2.51 ng of homologous protein for 50% IgE inhibition. Inhibition assays revealed extensive cross reactivity among kidney bean, peanut, black gram and pigeon pea. nLC-MS/MS analysis identified four allergens of kidney bean showing significant matches with known proteins namely lectin (phytohemagglutinin), phaseolin, alpha-amylase inhibitor precursor and group 3 late embryogenesis abundant protein.
Conclusion/Significance
Among legumes, kidney bean followed by chick pea and peanut are the major allergic triggers in asthma and rhinitis patients in India. Kidney bean showed eight major allergens and cross reacted with other legumes. A combination of SPT, sIgE and histamine release assay is helpful in allergy diagnosis.
doi:10.1371/journal.pone.0027193
PMCID: PMC3212544  PMID: 22096535
5.  Indoor fungal concentration in the homes of allergic/asthmatic children in Delhi, India 
Allergy & Rhinology  2011;2(1):21-32.
Allergy to fungi has been linked to a wide range of illnesses, including rhinitis and asthma. Therefore, exposure to fungi in home environment is an important factor for fungal allergy. The present study was aimed to investigate types of airborne fungi inside and outside the homes of asthmatic children and control subjects (nonasthmatic children). The dominant fungi were evaluated for their quantitative distribution and seasonal variation. The air samples were collected from indoors and immediate outdoors of 77 selected homes of children suffering from bronchial asthma/allergic rhinitis using Andersen volumetric air sampler. The isolated fungal genera/species were identified using reference literature, and statistical analysis of the dominant fungi was performed to study the difference in fungal concentration between indoor and immediate outdoor sites as well as in between different seasons. A total of 4423 air samples were collected from two indoor and immediate outdoor sites in a 1-year survey of 77 homes. This resulted in the isolation of an average of 110,091 and 107,070 fungal colonies per metric cube of air from indoor and outdoor sites, respectively. A total of 68 different molds were identified. Different species of Aspergillus, Alternaria, Cladosporium, and Penicillium were found to be the most prevalent fungi in Delhi homes, which constituted 88.6% of the total colonies indoors. Highest concentration was registered in autumn and winter months. Total as well as dominant fungi displayed statistically significant differences among the four seasons (p < 0.001). The largest number of isolations were the species of Aspergillus (>40% to total colony-forming units in indoors as well as outdoors) followed by Cladosporium spp. Annual concentration of Aspergillus spp. was significantly higher (p < 0.05) inside the homes when compared with outdoors. Most of the fungi also occurred at a significantly higher (p < 0.001) rate inside the homes when compared with immediate outdoors. Asthmatic children in Delhi are exposed to a substantial concentration of mold inside their homes as well as immediate outdoor air. The considerable seasonal distributions of fungi provide valuable data for investigation of the role of fungal exposure as a risk for respiratory disorders among patients suffering from allergy or asthma in Delhi.
doi:10.2500/ar.2011.2.0005
PMCID: PMC3390125  PMID: 22852111
Asthma; Delhi; indoor fungi; prevalence; respiratory allergy; seasonal variation

Results 1-7 (7)