Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Protein Fractions from Korean Mistletoe (Viscum Album coloratum) Extract Induce Insulin Secretion from Pancreatic Beta Cells 
Mistletoe (Viscum Album coloratum) has been known as a medicinal plant in European and Asian countries. Recent data show that biological activity of mistletoe alleviates hypertension, heart disease, renal failure, and cancer development. In this study, we report the antidiabetic effect of Korean mistletoe extract (KME). KME treatments enhanced the insulin secretion from the pancreatic β-cell without any effects of cytotoxicity. PDX-1 and beta2/neuroD known as transcription factors that regulate the expression of insulin gene were upregulated by treatment of the KME protein fractions isolated by ion-exchange chromatography after ammonium sulfate precipitation. Furthermore, these KME protein fractions significantly lowered the blood glucose level and the volume of drinking water in alloxan induced hyperglycemic mice. Taken together with the findings, it provides new insight that KME might be served as a useful source for the development of medicinal reagent to reduce blood glucose level of type I diabetic patients.
PMCID: PMC4053293  PMID: 24959189
2.  Microglia, seen from the CX3CR1 angle 
Microglial cells in brain and spinal cord are characterized by high expression of the chemokine receptor CX3CR1. Expression of the sole CX3CR1 ligand, the membrane-tethered and sheddable chemokine CX3CL1/fractalkine, is restricted in the brain parenchyma to selected neurons. Here we summarize our current understanding of the physiological role of CX3CR1 for microglia function and the CX3C axis in microglial/neuronal crosstalk in homeostasis and under challenge. Moreover, we will discuss the efforts of our laboratory and others to exploit CX3CR1 promoter activity for the visualization and genetic manipulation of microglia to probe their functional contributions in the central nerve system (CNS) context.
PMCID: PMC3600435  PMID: 23507975
microglia; neuropathology; Cre-loxP knock-in mice; CX3CR1; neuroimmunology
3.  Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus 
Immunity  2013;38(3):555-569.
Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6chiCX3CR1lo) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6cloCX3CR1hi) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.
PMCID: PMC4115271  PMID: 23477737
4.  Luminal Bacteria Recruit CD103+ Dendritic Cells into the Intestinal Epithelium to Sample Bacterial Antigens for Presentation 
Immunity  2013;38(3):581-595.
CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1+/gfp × Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.
PMCID: PMC4115273  PMID: 23395676
5.  Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain 
The Journal of Clinical Investigation  2014;124(5):2023-2036.
A major dose-limiting side effect associated with cancer-treating antineoplastic drugs is the development of neuropathic pain, which is not readily relieved by available analgesics. A better understanding of the mechanisms that underlie pain generation has potential to provide targets for prophylactic management of chemotherapy pain. Here, we delineate a pathway for pain that is induced by the chemotherapeutic drug vincristine sulfate (VCR). In a murine model of chemotherapy-induced allodynia, VCR treatment induced upregulation of endothelial cell adhesion properties, resulting in the infiltration of circulating CX3CR1+ monocytes into the sciatic nerve. At the endothelial-nerve interface, CX3CR1+ monocytes were activated by the chemokine CX3CL1 (also known as fractalkine [FKN]), which promoted production of reactive oxygen species that in turn activated the receptor TRPA1 in sensory neurons and evoked the pain response. Furthermore, mice lacking CX3CR1 exhibited a delay in the development of allodynia following VCR administration. Together, our data suggest that CX3CR1 antagonists and inhibition of FKN proteolytic shedding, possibly by targeting ADAM10/17 and/or cathepsin S, have potential as peripheral approaches for the prophylactic treatment of chemotherapy-induced pain.
PMCID: PMC4001538  PMID: 24743146
6.  Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis 
Immunity  2012;38(1):79-91.
Mononuclear phagocytes, including monocytes, macrophages and dendritic cells, contribute to tissue integrity, as well as innate and adaptive immune defense. Emerging evidence for labour division indicates that manipulation of these cells could bear therapeutic potential. However, specific ontogenies of individual populations and the overall functional organisation of the cellular network are not well-defined. Here we report a fate mapping study of the murine monocyte and macrophage compartment taking advantage of constitutive and conditional CX3CR1 promoter-driven Cre recombinase expression. We have demonstrated that major tissue resident macrophage populations, including liver Kupffer cells, lung alveolar, splenic and peritoneal macrophages, are established prior to birth and maintain themselves subsequently during adulthood independent of replenishment by blood monocytes. Furthermore, we have established that the short-lived Ly6C+ monocytes constitute obligatory steady state precursors of blood-resident Ly6C− cells and that the abundance of Ly6C+ blood monocytes dynamically controls the circulation life span of their progeny.
PMCID: PMC3908543  PMID: 23273845
7.  Left-sided appendicitis in a patient with situs inversus totalis 
Situs inversus totalis is a rare inherent disease in which the thoracic and abdominal organs are transposed. Symptoms of appendicitis in situs inversus (SI) may appear in the left lower quadrant, and the diagnosis of appendicitis is very difficult. We report a case of left-sided appendicitis diagnosed preoperatively after dextrocardia that was detected by chest X-ray, although the chief complaint of the patient was left lower-quadrant pain. The patient underwent an emergent laparoscopic appendectomy under the diagnosis of appendicitis after abdominal computed tomography (CT). In patients with left lower quadrant pain, if the chest X-ray shows dextrocardia, one should suspect left-sided appendicitis. A strong suspicion of appendicitis and an emergency laparoscopic operation after confirmation of the diagnosis by imaging modalities including abdominal CT or sonography can reduce the likelihood of misdiagnosis and complications including perforation and abscess. Laparoscopic appendectomy in SI was technically more challenging because of the mirror nature of the anatomy.
PMCID: PMC3433555  PMID: 22977765
Situs inversus; Appendicitis; Laparoscopic; Appendectomy
8.  DRB2 Is Required for MicroRNA Biogenesis in Arabidopsis thaliana 
PLoS ONE  2012;7(4):e35933.
The Arabidopsis thaliana (Arabidopsis) DOUBLE-STRANDED RNA BINDING (DRB) protein family consists of five members, DRB1 to DRB5. The biogenesis of two developmentally important small RNA (sRNA) species, the microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) by DICER-LIKE (DCL) endonucleases requires the assistance of DRB1 and DRB4 respectively. The importance of miRNA-directed target gene expression in plant development is exemplified by the phenotypic consequence of loss of DRB1 activity (drb1 plants).
Principal Findings
Here we report that the developmental phenotype of the drb235 triple mutant plant is the result of deregulated miRNA biogenesis in the shoot apical meristem (SAM) region. The expression of DRB2, DRB3 and DRB5 in wild-type seedlings is restricted to the SAM region. Small RNA sequencing of the corresponding tissue of drb235 plants revealed altered miRNA accumulation. Approximately half of the miRNAs detected remained at levels equivalent to those of wild-type plants. However, the accumulation of the remaining miRNAs was either elevated or reduced in the triple mutant. Examination of different single and multiple drb mutants revealed a clear association between the loss of DRB2 activity and altered accumulation for both the elevated and reduced miRNA classes. Furthermore, we show that the constitutive over-expression of DRB2 outside of its wild-type expression domain can compensate for the loss of DRB1 activity in drb1 plants.
Our results suggest that in the SAM region, DRB2 is both antagonistic and synergistic to the role of DRB1 in miRNA biogenesis, adding an additional layer of gene regulatory complexity in this developmentally important tissue.
PMCID: PMC3335824  PMID: 22545148

Results 1-8 (8)