Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Genetic Variations of α-Methylacyl-CoA Racemase Are Associated with Sporadic Prostate Cancer Risk in Ethnically Homogenous Koreans 
BioMed Research International  2013;2013:394285.
Background. To assess if the variants of (R)-alpha-methyl-CoA racemase (AMACR) gene would be associated with the risk of sporadic prostate cancer in ethnically homogenous Koreans. Materials and Methods. We enrolled 194 patients with prostate cancer and 169 healthy controls. A total of 17 single nucleotide polymorphisms of the AMACR gene were selected. The distribution of each genotype and haplotype was analyzed and their association with the incidence of prostate cancer was evaluated. Further, we detected AMACR expression in tumor with immunohistochemistry and analyzed its association with genotype regarding prostate cancer risk. Results. AG or GG genotype of rs2278008 (E277K) tended to lower prostate cancer risk. The minor G allele was found to be a significant allele that decreased the risk of prostate cancer (adjusted OR, 0.57; 95% CI, 0.35–0.93, P value = 0.025). In patients expression AMACR, AG or GG genotype was also significant genotype in terms of prostate cancer risk (adjusted OR, 0.47; 95% CI, 0.26–0.87, P value = 0.017). Further, [GGCGG] haplotype consisted of five coding SNPs of rs2278008, rs34677, rs2287939, rs10941112, and rs3195676 which decreased the risk of prostate cancer (P value = 0.047). Conclusions. Genetic variations of AMACR are associated with the risk of sporadic prostate cancer that underwent radical prostatectomy in Koreans.
PMCID: PMC3870614  PMID: 24383053
2.  HOXA11 hypermethylation is associated with progression of non-small cell lung cancer 
Oncotarget  2013;4(12):2317-2325.
This study was aimed at understanding the functional significance of HOXA11 hypermethylation in non-small cell lung cancer (NSCLC). HOXA11 hypermethylation was characterized in six lung cancer cell lines, and its clinical significance was analyzed using formalin-fixed paraffin-embedded tissues from 317 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA11 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA11 into H23 lung cancer cells resulted in the inhibition of cell migration and proliferation. HOXA11 hypermethylation was found in 218 (69%) of 317 primary NSCLCs. HOXA11 hypermethylation was found at a higher prevalence in squamous cell carcinoma than in adenocarcinoma (74% vs. 63%, respectively). HOXA11 hypermethylation was associated with Ki-67 proliferation index (P = 0.03) and pT stage (P = 0.002), but not with patient survival. Patients with pT2 and pT3 stages were 1.85 times (95% confidence interval [CI] = 1.04-3.29; P = 0.04) and 5.47 times (95% CI = 1.18-25.50; P = 0.01), respectively, more likely to show HOXA11 hypermethylation than those with pT1 stage, after adjusting for age, sex, and histology. In conclusion, the present study suggests that HOXA11 hypermethylation may contribute to the progression of NSCLC by promoting cell proliferation or migration.
PMCID: PMC3926829  PMID: 24259349
HOXA11; Hypermethylation; Non-small cell lung cancer; Progression; Migration
3.  Upregulation of adenylate cyclase 3 (ADCY3) increases the tumorigenic potential of cells by activating the CREB pathway 
Oncotarget  2013;4(10):1791-1803.
Adenylate cyclase 3 (ADCY3) is a widely expressed membrane-associated protein in human tissues, which catalyzes the formation of cyclic adenosine-3′,5′-monophosphate (cAMP). However, our transcriptome analysis of gastric cancer tissue samples (NCBI GEO GSE30727) revealed that ADCY3 expression was specifically altered in cancer samples. Here we investigated the tumor-promoting effects of ADCY3 overexpression and confirmed a significant correlation between the upregulation of ADCY3 and Lauren's intestinal-type gastric cancers. ADCY3 overexpression increased cell migration, invasion, proliferation, and clonogenicity in HEK293 cells; conversely, silencing ADCY3 expression in SNU-216 cells reduced these phenotypes. Interestingly, ADCY3 overexpression increased both the mRNA level and activity of matrix metalloproteinase 2 (MMP2) and MMP9 by increasing the levels of cAMP and phosphorylated cAMP-responsive element-binding protein (CREB). Consistent with these findings, treatment with a protein kinase A (PKA) inhibitor decreased MMP2 and MMP9 expression levels in ADCY3-overexpressing cells. Knockdown of ADCY3 expression by stable shRNA in human gastric cancer cells suppressed tumor growth in a tumor xenograft model. Thus, ADCY3 overexpression may exert its tumor-promoting effects via the cAMP/PKA/CREB pathway. Additionally, bisulfite sequencing of the ADCY3 promoter region revealed that gene expression was reduced by hypermethylation of CpG sites, and increased by 5-Aza-2′-deoxycytidine (5-Aza-dC)-induced demethylation. Our study is the first to report an association of ADCY3 with gastric cancer as well as its tumorigenic potentials. In addition, we demonstrate that the expression of ADCY3 is regulated through an epigenetic mechanism. Further study on the mechanism of ADCY3 in tumorigenesis will provide the basis as a new molecular target of gastric cancer.
PMCID: PMC3858564  PMID: 24113161
gastric cancer; adenylate cyclase; tumorigenesis; cAMP/PKA/CREB pathway; promoter methylation
4.  Differential gene expression pattern in early gastric cancer by an integrative systematic approach 
International Journal of Oncology  2012;41(5):1675-1682.
To elucidate the molecular basis of early gastric cancer (EGC), the genome-wide expression pattern of cancer and normal tissues from 27 patients were analyzed by a microarray-based method. Using an integrative systematic bioinformatics approach, we classified the differentially expressed genes in EGC. Interestingly, the more highly expressed genes in EGC exhibited the most significant correlation with cell migration and metastasis. This implies that, even at the early stage of gastric cancer, the molecular properties usually observed in late-stage cancer are already present. Furthermore, we have found a novel association between the expression pattern and molecular pathways of EGC and estrogen receptor α (ERα)-negative breast cancer through cross-experimental analysis. These results provide new insights into the biological properties of EGC, as well as yielding useful basic data for the study of molecular mechanisms of EGC carcinogenesis.
PMCID: PMC3982715  PMID: 22961301
estrogen receptor α; gastric cancer; metastasis; microarray; metalloproteinases
5.  Genomic profile analysis of diffuse-type gastric cancers 
Genome Biology  2014;15(4):R55.
Stomach cancer is the third deadliest among all cancers worldwide. Although incidence of the intestinal-type gastric cancer has decreased, the incidence of diffuse-type is still increasing and its progression is notoriously aggressive. There is insufficient information on genome variations of diffuse-type gastric cancer because its cells are usually mixed with normal cells, and this low cellularity has made it difficult to analyze the genome.
We analyze whole genomes and corresponding exomes of diffuse-type gastric cancer, using matched tumor and normal samples from 14 diffuse-type and five intestinal-type gastric cancer patients. Somatic variations found in the diffuse-type gastric cancer are compared to those of the intestinal-type and to previously reported variants. We determine the average exonic somatic mutation rate of the two types. We find associated candidate driver genes, and identify seven novel somatic mutations in CDH1, which is a well-known gastric cancer-associated gene. Three-dimensional structure analysis of the mutated E-cadherin protein suggests that these new somatic mutations could cause significant functional perturbations of critical calcium-binding sites in the EC1-2 junction. Chromosomal instability analysis shows that the MDM2 gene is amplified. After thorough structural analysis, a novel fusion gene TSC2-RNF216 is identified, which may simultaneously disrupt tumor-suppressive pathways and activate tumorigenesis.
We report the genomic profile of diffuse-type gastric cancers including new somatic variations, a novel fusion gene, and amplification and deletion of certain chromosomal regions that contain oncogenes and tumor suppressors.
PMCID: PMC4056347  PMID: 24690483
6.  Effects of Polymorphisms of Innate Immunity Genes and Environmental Factors on the Risk of Noncardia Gastric Cancer 
Increasing evidence suggests that polymorphisms in innate immunity genes are associated with Helicobacter pylori-induced inflammation and may influence susceptibility in developing noncardia gastric cancer. Therefore, we investigate the effect of polymorphisms of innate immunity genes and interactions with environmental factors in the Korean population.
Materials and Methods
We genotyped four polymorphisms of TLR2 (rs1898830), TLR4 (rs10983755 and rs10759932), and CD14 (rs2569190) in a case-control study of 487 noncardia gastric cancer patients and 487 sex- and age-matched healthy controls. Polytomous logistic regression models were used to detect the effects of genetic polymorphisms and environmental factors, which were stratified by the histological type of gastric cancer.
TLR4 rs10983755 A carriers were found to have higher risk of intestinal-type noncarida gastric cancer than G homozygotes (odds ratio [OR], 1.41; 95% confidence interval [CI], 1.01 to 1.97), but other genetic variants showed no association with the risk of noncardia gastric cancer. Among H. pylori-positive participants, smokers carrying TLR4 rs10983755 A had a higher risk of intestinal-type gastric cancer than nonsmoking TLR4 rs10983755 G homozygotes (OR, 4.28; 95% CI, 2.12 to 8.64). In addition, compared with tap water, other drinking water sources during childhood were found to be associated with the elevated risk of intestinal-type gastric cancer, and these associations were slightly stronger among TLR4 rs10983755 A carriers.
The genetic polymorphisms of innate immunity genes are associated with the development of intestinal-type noncardia gastric cancer and these associations may differ in accordance to an exposure to certain environmental factors.
PMCID: PMC3893329  PMID: 24454004
Noncardia gastric cancer; Innate immunity; Genetic polymorphisms; Smoking; Drinking water
7.  Epigenetic Inactivation of Heparan Sulfate (Glucosamine) 3-O-Sulfotransferase 2 in Lung Cancer and Its Role in Tumorigenesis 
PLoS ONE  2013;8(11):e79634.
This study was aimed at investigating the functional significance of heparan sulfate (glucosamine) 3-O-sulfotransferase 2 (HS3ST2) hypermethylation in non-small cell lung cancer (NSCLC).
Methodology/ Principal Findings
HS3ST2 hypermethylation was characterized in six lung cancer cell lines, and its clinical significance was analyzed using 298 formalin-fixed paraffin-embedded tissues and 26 fresh-frozen tissues from 324 NSCLC patients. MS-HRM (methylation-specific high-resolution melting) and EpiTYPERTM assays showed substantial hypermethylation of CpG island at the promoter region of HS3ST2 in six lung cancer cell lines. The silenced gene was demethylated and re-expressed by treatment with 5-aza-2′-deoxycytidine (5-Aza-dC). A promoter assay also showed the core promoter activity of HS3ST2 was regulated by methylation. Exogenous expression of HS3ST2 in lung cancer cells H460 and H23 inhibited cell migration, invasion, cell proliferation and whereas knockdown of HS3ST2 in NHBE cells induced cell migration, invasion, and cell proliferation in vitro. A negative correlation was observed between mRNA and methylation levels of HS3ST2 in 26 fresh-frozen tumors tissues (ρ = -0.51, P = 0.009; Spearman’s rank correlation). HS3ST2 hypermethylation was found in 95 (32%) of 298 primary NSCLCs. Patients with HS3ST2 hypermethylation in 193 node-negative stage I-II NSCLCs with a median follow-up period of 5.8 years had poor overall survival (hazard ratio = 2.12, 95% confidence interval = 1.25–3.58, P = 0.005) compared to those without HS3ST2 hypermethylation, after adjusting for age, sex, tumor size, adjuvant therapy, recurrence, and differentiation.
Conclusions/ Significance
The present study suggests that HS3ST2 hypermethylation may be an independent prognostic indicator for overall survival in node-negative stage I-II NSCLC.
PMCID: PMC3827134  PMID: 24265783
8.  Effects of Upconversion Nanoparticles on Polymerase Chain Reaction 
PLoS ONE  2013;8(9):e73408.
Nanoparticles (NPs) are attractive materials owing to their physical and electrochemical properties, which make them extremely useful in diagnostic applications. Photon upconversion is the phenomenon where high-energy photons are emitted upon excitation of low-energy photons. Nucleic acids detection based on upconversion nanoparticles (UCNPs), which display a high signal-to-noise ratio and no photobleaching, has been widely applied. We evaluated whether UCNPs can improve polymerase chain reaction (PCR) specificity and affect PCR amplification. The effects of UCNPs with a diameter size of 40, 70, and 250 nm were evaluated using 3 PCR kits (AccuPower PCR PreMix, AmpliTaq Gold 360 Master Mix, and HotStarTaq Plus Master Mix) and 3 real-time PCR kits (AccuPower GreenStar qPCR PreMix, SYBR Green PCR Master Mix, and QuantiTect SYBR Green PCR Kit). Quantum dots were used for comparison with the UCNPs. In the presence of an appropriate concentration of UCNPs, PCR specificity was optimized. UCNPs of 40-nm size improved PCR specificity more effectively than did UCNPs sized 70 or 250 nm. As the size and concentrations of the UCNPs were increased, PCR amplification was more severely inhibited. At lower annealing temperatures (25°C–45°C), addition of the 40 nm UCNP (1 µg/µL) to the PCR reagent produced specific PCR products without nonspecific sequence amplification. Therefore, UCNPs of different sizes, with different DNA polymerases used in the commercial kits, showed different inhibitory effects on PCR amplification. These results demonstrate that optimization of UCNPs, added to reaction mixtures at appropriate concentrations, can improve PCR specificity. However, the mechanism underlining UCNPs effect on PCR remains unclear and will require further investigation.
PMCID: PMC3764166  PMID: 24039935
9.  Galectin-7 is epigenetically-regulated tumor suppressor in gastric cancer 
Oncotarget  2013;4(9):1461-1471.
Gastric cancer is the second leading cause of cancer death and remains a major clinical challenge due to poor prognosis and limited treatment options. Therefore, the basic mechanisms underlying gastric tumorigenesis deserve investigation. Although regulation of the galactoside-binding lectin galectin-7 in cancer has been studied, its role in tumor formation and progression remains controversial. In this study, we investigated galectin-7 expression and its role in gastric cancer. Immunohistochemical staining using a tissue microarray of gastric cancer patients revealed significantly low expression levels of galectin-7 in malignant tissues compared with matched normal tissues, and decreased expression of galectin-7 in malignant tissues was associated with advanced TMN stage disease (p =0.034). Importantly, low expression of galectin-7 in normal tissues was associated with a poor survival rate (p =0.0561). Over-expression of galectin-7 in AGS gastric adenocarcinoma cells suppressed cell proliferation, migration, and invasion, whereas ablation of galectin-7 in KATO III gastric carcinoma cells reversed these properties. AGS cells that overexpressed galectin-7 could not form gastric tumors in xenografted mice. More than 70% hypermethylation was observed in 7 of 9 gastric cancer cell lines tested and 5-aza-cytidine treatment lowered galectin-7 expression by reducing methylation in 24 cancer cell lines from five different organ origins. We analyzed CpG islands in the galectin-7 genomic region and detected hypermethylation at +1566bp of exon 2, the predicted p53 binding region. DNA hypermethylation of this region was also detected in gastric cancer tissues from 20 patients. Taken together, our data indicate that galectin-7 has a tumor suppressive function, and that the gene is epigenetically modified by DNA methylation and significantly down-regulated in gastric cancer. Further study of galectin-7 regulation may lead to improved gastric cancer diagnosis and therapy.
PMCID: PMC3824540  PMID: 23985992
Galectin-7; Gastric cancer; DNA hypermethylation; Epigenetic mechanisms
10.  The relationship of Vascular endothelial growth factor gene polymorphisms and clinical outcome in advanced gastric cancer patients treated with FOLFOX: VEGF polymorphism in gastric cancer 
BMC Cancer  2013;13:43.
The aim of this study is to evaluate the associations between vascular endothelial growth factor (VEGF) Single-nucleotide polymorphisms (SNPs) and clinical outcome in advanced gastric cancer patients treated with oxaliplatin, 5-fluorouracil, and leucovorin (FOLFOX).
Genomic DNA was isolated from whole blood, and six VEGF (−2578C/A, -2489C/T, -1498 T/C, -634 G/C, +936C/T, and +1612 G/A) gene polymorphisms were analyzed by PCR. Levels of serum VEGF were measured using enzyme-linked immunoassays.
Patients with G/G genotype for VEGF -634 G/C gene polymorphism showed a lower response rate (22.2%) than those with G/C or C/C genotype (32.3%, 51.1%; P = 0.034). Patients with the VEGF -634 G/C polymorphism G/C + C/C genotype had a longer progression free survival (PFS) of 4.9 months, compared with the PFS of 3.5 months for those with the G/G (P = 0.043, log-rank test). By multivariate analysis, this G/G genotype of VEGF -634 G/C polymorphism was identified as an independent prognostic factor (Hazard ratio 1.497, P = 0.017).
Our data suggest that G/G genotype of VEGF -634 G/C polymorphism is related to the higher serum levels of VEGF, and poor clinical outcome in advanced gastric cancer patients.
PMCID: PMC3573956  PMID: 23374220
VEGF; Polymorphism; Gastric cancer
11.  Identification of genes underlying different methylation profiles in refractory anemia with excess blast and refractory cytopenia with multilineage dysplasia in myelodysplastic syndrome 
The Korean Journal of Hematology  2012;47(3):186-193.
Myelodysplastic syndrome (MDS) is a preleukemic condition that transforms into acute myeloid leukemia. However, the genetic events underlying this transformation remain poorly understood. Aberrant DNA methylation may play a causative role in the disease and its prognosis. Thus, we compared the DNA methylation profiles in refractory anemia with excess blast (RAEB) to those in refractory cytopenia with multilineage dysplasia (RCMD).
Bone marrow samples were collected from 20 patients with primary MDS (9 with RAEB and 11 with RCMD), and peripheral blood samples were collected from 4 healthy controls. These samples were assessed using a commercial whole genome-wide methylation assay. Methylation-specific polymerase chain reaction (PCR) was used to detect the methylation of candidate gene promoters in RAEB and RCMD.
Microarray data revealed significant hypermethylation in 69 genes within RAEB but not RCMD. Candidate genes were mapped to 5 different networks, and network 1 had the highest score due to its involvement in gene expression, cancer, and cell cycle. Five genes (GSTM5, BIK, CENPH, RERG, and ANGPTL2) were associated with malignant disease progression. Among them, the methylated promoter pairs of GSTM5 (55.5% and 20%), BIK (20% and 0%), and ANGPTL2 (44.4% and 10%) were observed more frequently in RAEB.
DNA methylation of GSTM5, BIK, and ANGPTL2 may induce epigenetic silencing and contribute to the increasing blasts and resulting MDS progression; however, the functions of these genes were not determined. Further study focusing on epigenetic silencing using various detection modalities is required.
PMCID: PMC3464335  PMID: 23071473
Myelodysplastic syndrome; DNA methylation; GSTM5; ANGPTL2; BIK
12.  Association Study between Folate Pathway Gene Single Nucleotide Polymorphisms and Gastric Cancer in Koreans 
Genomics & Informatics  2012;10(3):184-193.
Gastric cancer is ranked as the most common cancer in Koreans. A recent molecular biological study about the folate pathway gene revealed the correlation with a couple of cancer types. In the folate pathway, several genes are involved, including methylenetetrahydrofolate reductase (MTHFR), methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), and methyltetrahydrofolate-homocysteine methyltransferase (MTR). The MTHFR gene has been reported several times for the correlation with gastric cancer risk. However, the association of the MTRR or MTR gene has not been reported to date. In this study, we investigated the association between the single nucleotide polymorphisms (SNPs) of the MTHFR, MTRR, and MTR genes and the risk of gastric cancer in Koreans. To identify the genetic association with gastric cancer, we selected 17 SNPs sites in folate pathway-associated genes of MTHFR, MTR, and MTRR and tested in 1,261 gastric cancer patients and 375 healthy controls. By genotype analysis, estimating odds ratios and 95% confidence intervals (CI), rs1801394 in the MTRR gene showed increased risk for gastric cacner, with statistical significance both in the codominant model (odds ratio [OR], 1.39; 95% CI, 1.04 to 1.85) and dominant model (OR, 1.34; 95% CI, 1.02 to 1.75). Especially, in the obese group (body mass index ≥ 25 kg/m2), the codominant (OR, 9.08; 95% CI, 1.01 to 94.59) and recessive model (OR, 3.72; 95% CI, 0.92 to 16.59) showed dramatically increased risk (p < 0.05). In conclusion, rs1801394 in the MTRR gene is associated with gastric cancer risk, and its functional significance need to be validated.
PMCID: PMC3492654  PMID: 23166529
5-methyltetrahydrofolate-homocysteine S-methyltransferase; folate pathway; genetic olymorphism; methionine synthase reductase; methylenetetrahydrofolate reductase (NADPH2); stomach neoplasms
13.  Effects of Interleukin-10 Polymorphisms, Helicobacter pylori Infection, and Smoking on the Risk of Noncardia Gastric Cancer 
PLoS ONE  2012;7(1):e29643.
Both variations in the interleukin-10 (IL10) gene and environmental factors are thought to influence inflammation and gastric carcinogenesis. Therefore, we investigated the associations between IL10 polymorphisms, Helicobacter pylori (H. pylori) infection, and smoking in noncardia gastric carcinogenesis in Koreans.
We genotyped three promoter polymorphisms (-1082A>G, -819T>C, and -592 A>C) of IL10 in a case-control study of 495 noncardia gastric cancer patients and 495 sex- and age-matched healthy controls. Multiple logistic regression models were used to detect the effects of IL10 polymorphisms, H. pylori infection, and smoking on the risk of gastric cancer, which was stratified by the histological type of gastric cancer.
The IL10-819C and -592C alleles were found to have complete linkage disequilibrium, and all three IL10 polymorphisms were associated with an increased risk of intestinal-type noncardia gastric cancer. These associations were observed only in H. pylori-positive subjects and current smokers. A statistically significant interaction between the IL10-592 genotype and H. pylori infection on the risk of intestinal-type gastric cancer was observed (P for interaction  = 0.047). In addition, H. pylori-positive smokers who were carriers of either the IL10-1082G (OR [95% CI]  = 17.76 [6.17−51.06]) or the -592C (OR [95% CI]  = 8.37 [2.79−25.16]) allele had an increased risk of intestinal-type gastric cancer compared to H. pylori-negative nonsmokers homozygous for IL10-1082A and -592A, respectively. The interaction between the IL10-1082 polymorphism and the combined effects of H. pylori infection and smoking tended towards significance (P for interaction  = 0.080).
Inflammation-related genetic variants may interact with H. pylori infection and smoking to increase the risk of noncardia gastric cancer, particularly the intestinal-type. These findings may be helpful in identifying individuals at an increased risk for developing noncardia gastric cancer.
PMCID: PMC3250465  PMID: 22235320
14.  Cystatin M loss is associated with the losses of estrogen receptor, progesterone receptor, and HER4 in invasive breast cancer 
Breast Cancer Research : BCR  2010;12(6):R100.
This study was aimed at understanding the clinicopathological significance of cystatin M loss, and investigating possible factors responsible for cystatin M loss in breast cancer.
The expression of estrogen receptor (ER), progesterone receptor (PR), HER2, HER4, and cystatin M was retrospectively analyzed using immunohistochemistry in 117 patients with ductal carcinoma in situ (DCIS) and in 175 patients with invasive breast cancer (IBC). The methylation status of CST6 gene encoding cystatin M was evaluated using methylation-specific polymerase chain reaction (PCR) in formalin-fixed paraffin-embedded tissues from 292 participants and using pyrosequencing in fresh-frozen tumor and matched normal tissues from 51 IBC patients.
Cystatin M loss was found in 9 (8%) of 117 patients with DCIS and in 99 (57%) of 175 with invasive breast cancer (IBC) (P < 0.0001). Cystatin M loss was found in 58 (57%) of 101 HER2-negative IBCs and in 41 (55%) of 74 HER2-positive IBCs, and this difference was not statistically significant (P = 0.97). However, cystatin M loss was significantly associated with the loss of ER (P = 0.01), PR (P = 0.002), and HER4 (P = 0.003) in IBCs. Cystatin M loss occurred in 34 (76%) of the 45 HER4-negative IBCs and in 65 (50%) of the 130 HER4-positive IBCs. Multivariate analysis showed that cystatin M loss occurred at a 3.57 times (95% CI = 1.28 to 9.98; P = 0.01) higher prevalence in the triple-negative IBCs of ER, PR, and HER4 than in other subtypes, after adjusting for age. The quantity of CST6 methylation was associated with ER loss (P = 0.0002) in IBCs but not with the loss of PR (P = 0.64) or HER4 (P = 0.87).
The present study suggests that cystatin M loss may be associated with the losses of ER, PR, and HER4 in IBC.
PMCID: PMC3046445  PMID: 21092257
15.  Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR 
BMC Cancer  2010;10:240.
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results.
We assessed the suitability of six possible reference genes, beta-actin (ACTB), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), hypoxanthine phosphoribosyl transferase 1 (HPRT1), beta-2-microglobulin (B2M), ribosomal subunit L29 (RPL29) and 18S ribosomal RNA (18S rRNA) in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values.
This RT-qPCR study showed that there are statistically significant (p < 0.05) differences in the expression levels of HPRT1 and 18S rRNA in 'normal-' versus 'tumor stomach tissues'. The stability analyses by geNorm suggest B2M-GAPDH, as best reference gene combination for 'stomach cancer cell lines'; RPL29-HPRT1, for 'all stomach tissues'; and ACTB-18S rRNA, for 'all stomach cell lines and tissues'. NormFinder also identified B2M as the best reference gene for 'stomach cancer cell lines', RPL29-B2M for 'all stomach tissues', and 18S rRNA-ACTB for 'all stomach cell lines and tissues'. The comparisons of normalized expression of the target gene, GPNMB, showed different interpretation of target gene expression depend on best single reference gene or combination.
This study validated RPL29 and RPL29-B2M as the best single reference genes and combination, for RT-qPCR analysis of 'all stomach tissues', and B2M and B2M-GAPDH as the best single reference gene and combination, for 'stomach cancer cell lines'. Use of these validated reference genes should provide more exact interpretation of differential gene expressions at transcription level in stomach cancer.
PMCID: PMC2887403  PMID: 20507635

Results 1-15 (15)