PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Kim, junhee")
1.  Upregulation of death receptor 5 and activation of caspase 8/3 play a critical role in ergosterol peroxide induced apoptosis in DU 145 prostate cancer cells 
Cancer Cell International  2014;14(1):117.
Background
Though ergosterol peroxide (EP) derived from Neungyi mushrooms (Sarcodon aspratus) was known to have cytotoxic, apoptotic, anti-inflammatory and antimycobacterial effects, the underlying molecular mechanism of EP still remains unclear. Thus, in the present study, the apoptotic mechanism of EP was elucidated in DU 145 prostate cancer cells.
Methods
Cell viability of prostate cancer cells was measured by MTT assay. To see whether EP induces the apoptosis, FACS, western blot and TUNEL assay were performed. To determine the role of Death receptor (DR) 5 molecules in EP-induced apoptosis in DU 145 prostate cancer cells, the silencing of DR 5 was performed by using siRNAs.
Results
EP showed significant cytotoxicity against DU 145, PC 3, M2182 prostate cancer cells. Also, EP effectively increased the sub G1 population and terminal deoxynucleotidyl transferase DUTP nick end labeling (TUNEL) positive cells in DU 145 prostate cancer cells. Furthermore, western blotting revealed that EP cleaved poly (ADP-ribose) polymerase (PARP) and caspase 8/3, attenuated the expression of fluorescence loss in photobleaching (FLIP), Bcl-XL and Bcl-2 as well as activated Bax, Fas-associated death domain (FADD) and DR 5 in a concentration dependent manner in DU 145 prostate cancer cells. Conversely, caspase 8 inhibitor Z-IETD-FMK blocked the apoptotic ability of EP to cleave PARP and an increase of sub G1 population in DU 145 prostate cancer cells. Likewise, the silencing of DR 5 suppressed the cleavages of PARP induced by EP in DU 145 prostate cancer cells.
Conclusion
Overall, our findings suggest that ergosterol peroxide induces apoptosis via activation of death receptor 5 and caspase 8/3 in DU 145 prostate cancer cells as a cancer chemopreventive agent or dietary factor.
doi:10.1186/s12935-014-0117-5
PMCID: PMC4265345  PMID: 25506265
Ergosterol peroxide; Apoptosis; Caspase 8/3; Z-IETD-FMK; DR 5; DU 145 prostate cancer cells
2.  Inhibitory effect of ethanol extract of Ocimum sanctum on osteopontin mediated metastasis of NCI-H460 non-small cell lung cancer cells 
Background
Osteopontin (OPN) is one of important molecular targets in cancer progression, metastasis as a calcium-binding, extracellular-matrix-associated protein of the small integrin-binding ligand and, N-linked glycoprotein. In the present study, anti-metastatic mechanism of ethanol extracts of Ocimum sanctum (EEOS) was elucidated on OPN enhanced metastasis in NCI-H460 non- small cell lung cancer cells.
Methods
Cell viability was measured by MTT assay. Adhesion and invasion assays were carried out to see that EEOS inhibited cell adhesion and invasion in OPN treated and non-treated NCI-H 460 cells. RT-PCR was used to determine the mRNA levels of uPA, uPAR, and EGFR.
Results
EEOS significantly inhibited cell adhesion and invasion in OPN treated and non treated NCI-H460 cells, though EEOS did not show any toxicity up to 200 μg/ml. EEOS effectively attenuated the expression of OPN and CD44 and also OPN activated the expression of CD44 in NCI-H460 cells. In addition, EEOS effectively suppressed the expression of phosphatidylinositide 3-kinases (PI3K) and cyclooxygenase 2 (COX-2) and the phosphorylation of Akt at protein level in OPN treated NCI-H460 cells. Also, EEOS significantly attenuated the expression of urokinase plasminogen activator (uPA), its receptor (uPAR) and epidermal growth factor receptor (EGFR) at mRNA level and reduced vascular endothelial growth factor (VEGF) production and MMP-9 activity in OPN treated NCI-H460 cells. Furthermore, PI3K/Akt inhibitor LY294002 enhanced anti-metastatic potential of EEOS to attenuate the expression of uPA and MMP-9 in OPN treated NCI-H 460 cells.
Conclusion
Overall, our findings suggest that anti-metastatic mechanism of EEOS is mediated by inhibition of PI3K/Akt in OPN treated NCI-H460 non-small cell lung cancer cells.
doi:10.1186/1472-6882-14-419
PMCID: PMC4219006  PMID: 25345853
EEOS; Metastasis; Osteopontin; uPA; uPAR; PI3K
3.  Characterization of the roles of Blt1p in fission yeast cytokinesis 
Molecular Biology of the Cell  2014;25(13):1946-1957.
Initiation of ring constriction and completion of cell division are delayed in blt1Δ cells because contractile rings recruit and retain less Sid2p and Mob1p. This results in slower, reduced accumulation of Clp1p phosphatase and β-glucan synthase Bgs1p at the cleavage furrow, delaying the onset of ring constriction and completion of cell division.
Spatial and temporal regulation of cytokinesis is essential for cell division, yet the mechanisms that control the formation and constriction of the contractile ring are incompletely understood. In the fission yeast Schizosaccharomyces pombe proteins that contribute to the cytokinetic contractile ring accumulate during interphase in nodes—precursor structures around the equatorial cortex. During mitosis, additional proteins join these nodes, which condense to form the contractile ring. The cytokinesis protein Blt1p is unique in being present continuously in nodes from early interphase through to the contractile ring until cell separation. Blt1p was shown to stabilize interphase nodes, but its functions later in mitosis were unclear. We use analytical ultracentrifugation to show that purified Blt1p is a tetramer. We find that Blt1p interacts physically with Sid2p and Mob1p, a protein kinase complex of the septation initiation network, and confirm known interactions with F-BAR protein Cdc15p. Contractile rings assemble normally in blt1∆ cells, but the initiation of ring constriction and completion of cell division are delayed. We find three defects that likely contribute to this delay. Without Blt1p, contractile rings recruited and retained less Sid2p/Mob1p and Clp1p phosphatase, and β-glucan synthase Bgs1p accumulated slowly at the cleavage site.
doi:10.1091/mbc.E13-06-0300
PMCID: PMC4072569  PMID: 24790095
4.  Spontaneous Evolution in Bilirubin Levels Predicts Liver-Related Mortality in Patients with Alcoholic Hepatitis 
PLoS ONE  2014;9(7):e100870.
The accurate prognostic stratification of alcoholic hepatitis (AH) is essential for individualized therapeutic decisions. The aim of this study was to develop a new prognostic model to predict liver-related mortality in Asian AH patients. We conducted a hospital-based, retrospective cohort study using 308 patients with AH between 1999 and 2011 (a derivation cohort) and 106 patients with AH between 2005 and 2012 (a validation cohort). The Cox proportional hazards model was constructed to select significant predictors of liver-related death from the derivation cohort. A new prognostic model was internally validated using a bootstrap sampling method. The discriminative performance of this new model was compared with those of other prognostic models using a concordance index in the validation cohort. Bilirubin, prothrombin time, creatinine, potassium at admission, and a spontaneous change in bilirubin levels from day 0 to day 7 (SCBL) were incorporated into a model for AH to grade the severity in an Asian patient cohort (MAGIC). For risk stratification, four risk groups were identified with cutoff scores of 29, 37, and 46 based on the different survival probabilities (P<0.001). In addition, MAGIC showed better discriminative performance for liver-related mortality than any other scoring system in the validation cohort. MAGIC can accurately predict liver-related mortality in Asian patients hospitalized for AH. Therefore, SCBL may help us decide whether patients with AH urgently require corticosteroid treatment.
doi:10.1371/journal.pone.0100870
PMCID: PMC4094461  PMID: 25013906
5.  A Harmonic Linear Dynamical System for Prominent ECG Feature Extraction 
Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.
doi:10.1155/2014/761536
PMCID: PMC3955697  PMID: 24719648
6.  Air pollution and hemorrhagic fever with renal syndrome in South Korea: an ecological correlation study 
BMC Public Health  2013;13:347.
Background
The effects of air pollution on the respiratory and cardiovascular systems, and the resulting impacts on public health, have been widely studied. However, little is known about the effect of air pollution on the occurrence of hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease. In this study, we evaluated the correlation between air pollution and HFRS incidence from 2001 to 2010, and estimated the significance of the correlation under the effect of climate variables.
Methods
We obtained data regarding HFRS, particulate matter smaller than 10 μm (PM10) as an index of air pollution, and climate variables including temperature, humidity, and precipitation from the national database of South Korea. Poisson regression models were established to predict the number of HFRS cases using air pollution and climate variables with different time lags. We then compared the ability of the climate model and the combined climate and air pollution model to predict the occurrence of HFRS.
Results
The correlations between PM10 and HFRS were significant in univariate analyses, although the direction of the correlations changed according to the time lags. In multivariate analyses of adjusted climate variables, the effects of PM10 with time lags were different. However, PM10 without time lags was selected in the final model for predicting HFRS cases. The model that combined climate and PM10 data was a better predictor of HFRS cases than the model that used only climate data, for both the study period and the year 2011.
Conclusions
This is the first report to document an association between HFRS and PM10 level.
doi:10.1186/1471-2458-13-347
PMCID: PMC3641006  PMID: 23587219
Air pollution; Hantavirus; Hemorrhagic fever with renal syndrome; Particulate matter; Infection
7.  Celebrating the World Blood Donor Day 2012 
The Korean Journal of Hematology  2012;47(3):159-160.
doi:10.5045/kjh.2012.47.3.159
PMCID: PMC3464330  PMID: 23071468
8.  PDHK-2 Deficiency Is Associated with Attenuation of Lipase-Mediated Fat Consumption for the Increased Survival of Caenorhabditis elegans Dauers 
PLoS ONE  2012;7(7):e41755.
In Caenorhabditis elegans, slow fat consumption has been suggested to contribute to the extension of the survival rate during nutritionally adverse conditions. Here, we investigated the potential role of pyruvate dehydrogenase kinase (PDHK)-2, the C. elegans homolog of mammalian PDK, effects on fat metabolism under nutritional conditions. PDHK-2 was expressed at low levels under well-fed conditions but was highly induced during long-term starvation and in the dauer state. This increase in pdhk-2 expression was regulated by both DAF-16 and NHR-49. Dauer-specific induction of PDHK-2 was abolished upon entry into the post-dauer stage. Interestingly, in the long-term dauer state, stored fat levels were higher in daf-2(e1370);pdhk-2 double mutants than in daf-2(e1370), suggesting a positive relationship between PDHK-2 activity and fat consumption. PDHK-2 deficiency has been shown to lead to greater preservation of residual fats, which would be predicted to contribute to survival during the dauer state. A test of this prediction showed that the survival rates of daf-2(e1370);pdhk-2(tm3075) and daf-2(e1370);pdhk-2(tm3086) double mutants were higher than that of daf-2(e1370), suggesting that loss of either the ATP-binding domain (tm3075) or branched chain keto-acid dehydrogenase kinase domain (tm3086) of PDHK-2 leads to reduced fat consumption and thus favors increased dauer survival. This attenuated fat consumption in the long-term dauer state of C. elegans daf-2 (e1370);pdhk-2 mutants was associated with concomitant down-regulation of the lipases ATGL (adipose triglyceride lipase), HSL (hormone-sensitive lipase), and C07E3.9 (phospholipase). In contrast, PDHK-2 overexpression in wild-type starved worms induced lipase expression and promoted abnormal dauer formation. Thus, we propose that PDHK-2 serves as a molecular bridge, connecting fat metabolism and survival under nutritionally adverse conditions in C. elegans.
doi:10.1371/journal.pone.0041755
PMCID: PMC3407204  PMID: 22848591
9.  Developmental Gene Expression Profiling along the Tonotopic Axis of the Mouse Cochlea 
PLoS ONE  2012;7(7):e40735.
The mammalian cochlear duct is tonotopically organized such that the basal cochlea is tuned to high frequency sounds and the apical cochlea to low frequency sounds. In an effort to understand how this tonotopic organization is established, we searched for genes that are differentially expressed along the tonotopic axis during neonatal development. Cochlear tissues dissected from P0 and P8 mice were divided into three equal pieces, representing the base, middle and apex, and gene expression profiles were determined using the microarray technique. The gene expression profiles were grouped according to changes in expression levels along the tonotopic axis as well as changes during neonatal development. The classified groups were further analyzed by functional annotation clustering analysis to determine whether genes associated with specific biological function or processes are particularly enriched in each group. These analyses identified several candidate genes that may be involved in cochlear development and acquisition of tonotopy. We examined the expression domains for a few candidate genes in the developing mouse cochlea. Tnc (tenacin C) and Nov (nephroblastoma overexpressed gene) are expressed in the basilar membrane, with increased expression toward the apex, which may contribute to graded changes in the structure of the basilar membrane along the tonotopic axis. In addition, Fst (Follistatin), an antagonist of TGF-β/BMP signaling, is expressed in the lesser epithelial ridge and at gradually higher levels towards the apex. The graded expression pattern of Fst is established at the time of cochlear specification and maintained throughout embryonic and postnatal development, suggesting its possible role in the organization of tonotopy. Our data will provide a good resource for investigating the developmental mechanisms of the mammalian cochlea including the acquisition of tonotopy.
doi:10.1371/journal.pone.0040735
PMCID: PMC3395647  PMID: 22808246
10.  SPECT Imaging of Epilepsy: An Overview and Comparison with F-18 FDG PET 
Epilepsy surgery is highly effective in treating refractory epilepsy, but requires accurate presurgical localization of the epileptogenic focus. Briefly, localization of the region of seizure onset traditionally dependents on seizure semiology, scalp EEG recordings and correlation with anatomical imaging modalities such as MRI. The introduction of noninvasive functional neuroimaging methods, including single-photon emission computed tomography (SPECT) and positron emission tomography (PET) has dramatically changed the method for presurgical epilepsy evaluation. These imaging modalities have become powerful tools for the investigation of brain function and are an essential part of the evaluation of epileptic patients. Of these methods, SPECT has the practical capacity to image blood flow functional changes that occur during seizures in the routine clinical setting. In this review we present the basic principles of epilepsy SPECT and PET imaging. We discuss the properties of the SPECT tracers to be used for this purpose and imaging acquisition protocols as well as the diagnostic performance of SPECT in addition to SPECT image analysis methods. This is followed by a discussion and comparison to F-18 FDG PET acquisition and imaging analysis methods.
doi:10.1155/2011/813028
PMCID: PMC3139140  PMID: 21785722
11.  Kinetic modeling of the serotonin 5-HT1B receptor radioligand [11C]P943 in humans 
[11C]P943 is a new radioligand recently developed to image and quantify serotonin 5-Hydroxytryptamine (5-HT1B) receptors with positron emission tomography (PET). The purpose of this study was to evaluate [11C]P943 for this application in humans, and to determine the most suitable quantification method. Positron emission tomography data and arterial input function measurements were acquired in a cohort of 32 human subjects. Using arterial input functions, compartmental modeling, the Logan graphical analysis, and the multilinear method MA1 were tested. Both the two tissue-compartment model and MA1 provided good fits of the PET data and reliable distribution volume estimates. Using the cerebellum as a reference region, BPND binding potential estimates were computed. [11C]P943 BPND estimates were significantly correlated with in vitro measurements of the density of 5-HT1B receptors, with highest values in the occipital cortex and pallidum. To evaluate noninvasive methods, two- and three-parameter graphical analyses, Simplified Reference Tissue Models (SRTM and SRTM2), and Multilinear Reference Tissue Models (MRTM and MRTM2) were tested. The MRTM2 model provided the best correlation with MA1 binding-potential estimates. Parametric images of the volume of distribution or binding potential of [11C]P943 could be computed using both MA1 and MRTM2. The results show that [11C]P943 provides quantitative measurements of 5-HT1B binding potential.
doi:10.1038/jcbfm.2009.195
PMCID: PMC2949107  PMID: 19773803
brain; evaluation of new radiotracers; 5-HT1B serotonin receptors; human; positron emission tomography (PET); tracer kinetic modeling

Results 1-11 (11)