PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Enhanced autophagy in cytarabine arabinoside-resistant U937 leukemia cells and its potential as a target for overcoming resistance 
Molecular Medicine Reports  2016;13(4):3433-3440.
Autophagy is a lysosomal degradation mechanism that is essential for cell survival, differentiation, development, and homeostasis. Autophagy protects cells from various stresses, including protecting normal cells from harmful metabolic conditions, and cancer cells from chemotherapeutics. In the current study, a cytarabine arabinoside (Ara-C)-sensitive U937 leukemia cell line and an Ara-C-resistant U937 (U937/AR) cell line were assessed for baseline autophagy activity by investigating the LC3-I conversion to LC3-II, performing EGFP-LC3 puncta, an acidic autophagolysosome assay, and measuring the expression of various autophagy-related genes. The results demonstrated significantly higher autophagic activity in the U937/AR cells compared with the U937 cells, when the cells were cultured with or without serum. Furthermore, an increase in the autophagic activity in starved U937/AR cells was demonstrated, compared with that in the starved U937 cells. Administration of an autophagy inhibitor demonstrated no change in cell death in the two cell lines when cultured with serum, however, it induced cell death regardless of the Ara-C sensitivity when the cell lines were cultured without serum. In addition, the U937 cells demonstrated an Ara-C resistance when cultured without serum. Co-treatment with Ara-C and the autophagy inhibitor significantly induced cell death in the U937/AR and Ara-C-sensitive U937 cells. In conclusion, autophagy serves an important role in protecting U937 cells from Ara-C and in the development of Ara-C resistance. Inhibition of autophagy combined with the Ara-C treatment in the U937 cells augmented the anti-leukemic effect of Ara-C and overcame Ara-C resistance, suggesting that autophagy may be an important therapeutic target to further improve the treatment outcome in patients with acute myeloid leukemia.
doi:10.3892/mmr.2016.4949
PMCID: PMC4805098  PMID: 26935591
autophagy; Ara-C-resistant; U937; acute myeloid leukemia; treatment
2.  Serum microRNA-21 as a Potential Biomarker for Response to Hypomethylating Agents in Myelodysplastic Syndromes 
PLoS ONE  2014;9(2):e86933.
Identification of biomarkers that predict responses to hypomethylating agents (HMAs) will allow optimal strategies for epigenetic therapy in myelodysplastic syndromes (MDS) to be established. Serum miR-21 was quantitatively measured in 58 MDS patients treated with HMAs and 14 healthy controls. Serum miR-192 was an internal control, and diagnostic performance was evaluated according to receiver operating characteristics (ROCs). ROC analysis indicated that serum miR-21 levels differentiated responders from non-responders with an area under the curve of 0.648 (95% confidence, 0.49 to 0.72). The baseline level of serum miR-21 was significantly lower in the responder group than in the non-responder group (P = 0.041). The overall response rate (ORR) of the high miR-21 group was significantly lower than that of the low miR-21 group (41.2 vs. 73.2%, P = 0.021). Progression-free survival (PFS) was significantly inferior in the high group versus the low group (14.0 vs. 44.5 months, P = 0.001). Multivariate analyses revealed that the initial serum miR-21 level (P = 0.001) and circulating blasts (P = 0.007) were prognostic factors for PFS. Serum miR-21 level was significantly associated with ORR and PFS in MDS patients treated with HMAs. Although validation with a large prospective study is required, serum miR-21 is a potential biomarker of epigenetic therapy in MDS patients.
doi:10.1371/journal.pone.0086933
PMCID: PMC3913572  PMID: 24503739
3.  Resveratrol Alters microRNA Expression Profiles in A549 Human Non-Small Cell Lung Cancer Cells 
Molecules and Cells  2011;32(3):243-249.
Resveratrol is a plant phenolic phytoalexin that has been reported to have antitumor properties in several types of cancers. In particular, several studies have suggested that resveratrol exerts antiproliferative effects against A549 human non-small cell lung cancer cells; however, its mechanism of action remains incompletely understood. Deregulation of microRNAs (miRNAs), a class of small, noncoding, regulatory RNA molecules involved in gene expression, is strongly correlated with lung cancer. In this study, we demonstrated that resveratrol treatment altered miRNA expression in A549 cells. Using microarray analysis, we identified 71 miRNAs exhibiting greater than 2-fold expression changes in resveratrol-treated cells relative to their expression levels in untreated cells. Furthermore, we identified target genes related to apoptosis, cell cycle regulation, cell proliferation, and differentiation using a miRNA target-prediction program. In conclusion, our data demonstrate that resveratrol induces considerable changes in the miRNA expression profiles of A549 cells, suggesting a novel approach for studying the anticancer mechanisms of resveratrol.
doi:10.1007/s10059-011-1037-z
PMCID: PMC3887628  PMID: 21887509
A549; human non-small cell lung cancer cells; microRNA; resveratrol
4.  Aurora A kinase expression is increased in leukemia stem cells, and a selective Aurora A kinase inhibitor enhances Ara-C-induced apoptosis in acute myeloid leukemia stem cells 
The Korean Journal of Hematology  2012;47(3):178-185.
Background
The overexpression of Aurora A kinase (AurA) has been reported in various malignancies, including acute myeloid leukemia (AML). However, the expression of AurA and the effects of AurA inhibition in cancer stem cells are not yet fully understood. We investigated the expression and inhibition of AurA in AML stem cells (CD34+/CD38-).
Methods
Expression of AurA was investigated in cell lines (NB4 and KG1) that express high levels of CD34 and low levels of CD38. Primary AML cells were harvested from 8 patients. The expression of AurA and cell death induced by inhibition of AurA were analyzed in CD34+/CD38- cells.
Results
AurA was shown to be overexpressed in both primary AML cells and leukemia stem cells (LSCs) compared to normal hematopoietic stem cells. Inhibition of AurA plus cytarabine treatment in LSCs resulted in increased cytotoxicity compared to cytarabine treatment alone. Additional stimulation with granulocyte-colony stimulating factor (G-CSF) increased the cell death caused by AurA inhibition plus cytarabine treatment.
Conclusion
To our knowledge, this is the first report describing increased expression of AurA in LSCs. Our results suggest that selective AurA inhibition may be used to reduce LSCs, and this reduction may be enhanced by stimulation with G-CSF. Further exploration of relationship between nuclear factor kappa-B and AurA inhibition and the potential of AurA inhibition for use in leukemia treatment is needed.
doi:10.5045/kjh.2012.47.3.178
PMCID: PMC3464334  PMID: 23071472
Acute myeloid leukemia; Leukemia stem cell; Aurora kinase

Results 1-4 (4)