PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Serum microRNA-21 as a Potential Biomarker for Response to Hypomethylating Agents in Myelodysplastic Syndromes 
PLoS ONE  2014;9(2):e86933.
Identification of biomarkers that predict responses to hypomethylating agents (HMAs) will allow optimal strategies for epigenetic therapy in myelodysplastic syndromes (MDS) to be established. Serum miR-21 was quantitatively measured in 58 MDS patients treated with HMAs and 14 healthy controls. Serum miR-192 was an internal control, and diagnostic performance was evaluated according to receiver operating characteristics (ROCs). ROC analysis indicated that serum miR-21 levels differentiated responders from non-responders with an area under the curve of 0.648 (95% confidence, 0.49 to 0.72). The baseline level of serum miR-21 was significantly lower in the responder group than in the non-responder group (P = 0.041). The overall response rate (ORR) of the high miR-21 group was significantly lower than that of the low miR-21 group (41.2 vs. 73.2%, P = 0.021). Progression-free survival (PFS) was significantly inferior in the high group versus the low group (14.0 vs. 44.5 months, P = 0.001). Multivariate analyses revealed that the initial serum miR-21 level (P = 0.001) and circulating blasts (P = 0.007) were prognostic factors for PFS. Serum miR-21 level was significantly associated with ORR and PFS in MDS patients treated with HMAs. Although validation with a large prospective study is required, serum miR-21 is a potential biomarker of epigenetic therapy in MDS patients.
doi:10.1371/journal.pone.0086933
PMCID: PMC3913572  PMID: 24503739
2.  Resveratrol Alters microRNA Expression Profiles in A549 Human Non-Small Cell Lung Cancer Cells 
Molecules and Cells  2011;32(3):243-249.
Resveratrol is a plant phenolic phytoalexin that has been reported to have antitumor properties in several types of cancers. In particular, several studies have suggested that resveratrol exerts antiproliferative effects against A549 human non-small cell lung cancer cells; however, its mechanism of action remains incompletely understood. Deregulation of microRNAs (miRNAs), a class of small, noncoding, regulatory RNA molecules involved in gene expression, is strongly correlated with lung cancer. In this study, we demonstrated that resveratrol treatment altered miRNA expression in A549 cells. Using microarray analysis, we identified 71 miRNAs exhibiting greater than 2-fold expression changes in resveratrol-treated cells relative to their expression levels in untreated cells. Furthermore, we identified target genes related to apoptosis, cell cycle regulation, cell proliferation, and differentiation using a miRNA target-prediction program. In conclusion, our data demonstrate that resveratrol induces considerable changes in the miRNA expression profiles of A549 cells, suggesting a novel approach for studying the anticancer mechanisms of resveratrol.
doi:10.1007/s10059-011-1037-z
PMCID: PMC3887628  PMID: 21887509
A549; human non-small cell lung cancer cells; microRNA; resveratrol
3.  Aurora A kinase expression is increased in leukemia stem cells, and a selective Aurora A kinase inhibitor enhances Ara-C-induced apoptosis in acute myeloid leukemia stem cells 
The Korean Journal of Hematology  2012;47(3):178-185.
Background
The overexpression of Aurora A kinase (AurA) has been reported in various malignancies, including acute myeloid leukemia (AML). However, the expression of AurA and the effects of AurA inhibition in cancer stem cells are not yet fully understood. We investigated the expression and inhibition of AurA in AML stem cells (CD34+/CD38-).
Methods
Expression of AurA was investigated in cell lines (NB4 and KG1) that express high levels of CD34 and low levels of CD38. Primary AML cells were harvested from 8 patients. The expression of AurA and cell death induced by inhibition of AurA were analyzed in CD34+/CD38- cells.
Results
AurA was shown to be overexpressed in both primary AML cells and leukemia stem cells (LSCs) compared to normal hematopoietic stem cells. Inhibition of AurA plus cytarabine treatment in LSCs resulted in increased cytotoxicity compared to cytarabine treatment alone. Additional stimulation with granulocyte-colony stimulating factor (G-CSF) increased the cell death caused by AurA inhibition plus cytarabine treatment.
Conclusion
To our knowledge, this is the first report describing increased expression of AurA in LSCs. Our results suggest that selective AurA inhibition may be used to reduce LSCs, and this reduction may be enhanced by stimulation with G-CSF. Further exploration of relationship between nuclear factor kappa-B and AurA inhibition and the potential of AurA inhibition for use in leukemia treatment is needed.
doi:10.5045/kjh.2012.47.3.178
PMCID: PMC3464334  PMID: 23071472
Acute myeloid leukemia; Leukemia stem cell; Aurora kinase

Results 1-3 (3)