PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (286)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Monte Carlo-based revised values of dose rate constants at discrete photon energies 
Absorbed dose rate to water at 0.2 cm and 1 cm due to a point isotropic photon source as a function of photon energy is calculated using the EDKnrc user-code of the EGSnrc Monte Carlo system. This code system utilized widely used XCOM photon cross-section dataset for the calculation of absorbed dose to water. Using the above dose rates, dose rate constants are calculated. Air-kerma strength Sk needed for deriving dose rate constant is based on the mass-energy absorption coefficient compilations of Hubbell and Seltzer published in the year 1995. A comparison of absorbed dose rates in water at the above distances to the published values reflects the differences in photon cross-section dataset in the low-energy region (difference is up to 2% in dose rate values at 1 cm in the energy range 30–50 keV and up to 4% at 0.2 cm at 30 keV). A maximum difference of about 8% is observed in the dose rate value at 0.2 cm at 1.75 MeV when compared to the published value. Sk calculations based on the compilation of Hubbell and Seltzer show a difference of up to 2.5% in the low-energy region (20–50 keV) when compared to the published values. The deviations observed in the values of dose rate and Sk affect the values of dose rate constants up to 3%.
doi:10.4103/0971-6203.125473
PMCID: PMC3931226  PMID: 24600166
Absorbed dose rate; air-kerma strength; brachytherapy; dose rate constant; TG-43
3.  Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations 
High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by 241Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy-1 for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy-1 achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production.
doi:10.4103/0971-6203.125476
PMCID: PMC3931222  PMID: 24600167
Elekta; MCNPX code; neutron dosimetry; TLD600; TLD700 varian
4.  ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors 
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.
doi:10.4103/0971-6203.125481
PMCID: PMC3931223  PMID: 24600168
Image-guided radiotherapy; Monte Carlo simulation; optical photons; scintillation detectors; segmented scintillators
5.  Effective atomic numbers of some tissue substitutes by different methods: A comparative study 
Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Zeff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Zeff, direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV < E < 5 MeV) where the Compton interaction dominates. A large difference in effective atomic numbers by direct method and Auto-Zeff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Zeff, direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV < E < 10 MeV). The direct method was found to be appropriate method for computation of effective atomic numbers in photo-electric region (10 keV < E < 100 keV). The tissue equivalence of the tissue substitutes is possible to represent by any method for computation of effective atomic number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters.
doi:10.4103/0971-6203.125489
PMCID: PMC3931224  PMID: 24600169
Atomic numbers; Compton scattering; gamma; mixture rule; tissue substitutes; Rayleigh scattering
6.  Reduction of radiation risks in patients undergoing some X-ray examinations by using optimal projections: A Monte Carlo program-based mathematical calculation 
The objectives of this paper were calculation and comparison of the effective doses, the risks of exposure-induced cancer, and dose reduction in the gonads for male and female patients in different projections of some X-ray examinations. Radiographies of lumbar spine [in the eight projections of anteroposterior (AP), posteroanterior (PA), right lateral (RLAT), left lateral (LLAT), right anterior-posterior oblique (RAO), left anterior-posterior oblique (LAO), right posterior-anterior oblique (RPO), and left posterior-anterior oblique (LPO)], abdomen (in the two projections of AP and PA), and pelvis (in the two projections of AP and PA) were investigated. A solid-state dosimeter was used for the measuring of the entrance skin exposure. A Monte Carlo program was used for calculation of effective doses, the risks of radiation-induced cancer, and doses to the gonads related to the different projections. Results of this study showed that PA projection of abdomen, lumbar spine, and pelvis radiographies caused 50%-57% lower effective doses than AP projection and 50%-60% reduction in radiation risks. Also use of LAO projection of lumbar spine X-ray examination caused 53% lower effective dose than RPO projection and 56% and 63% reduction in radiation risk for male and female, respectively, and RAO projection caused 28% lower effective dose than LPO projection and 52% and 39% reduction in radiation risk for males and females, respectively. About dose reduction in the gonads, using of the PA position rather than AP in the radiographies of the abdomen, lumbar spine, and pelvis can result in reduction of the ovaries doses in women, 38%, 31%, and 25%, respectively and reduction of the testicles doses in males, 76%, 86%, and 94%, respectively. Also for oblique projections of lumbar spine X-ray examination, with employment of LAO rather than RPO and also RAO rather than LPO, demonstrated 22% and 13% reductions to the ovaries doses and 66% and 54% reductions in the testicles doses, respectively.
doi:10.4103/0971-6203.125500
PMCID: PMC3931225  PMID: 24600170
Optimal projections; radiation risks reduction; X-ray examinations
7.  Estimation of dose enhancement to soft tissue due to backscatter radiation near metal interfaces during head and neck radiothearpy - A phantom dosimetric study with radiochromic film 
The objective of this study was to investigate the dose enhancement to soft tissue due to backscatter radiation near metal interfaces during head and neck radiotherapy. The influence of titanium-mandibular plate with the screws on radiation dose was tested on four real bones from mandible with the metal and screws fixed. Radiochromic films were used for dosimetry. The bone and metal were inserted through the film at the center symmetrically. This was then placed in a small jig (7 cm × 7 cm × 10 cm) to hold the film vertically straight. The polymer granules (tissue-equivalent) were placed around the film for homogeneous scatter medium. The film was irradiated with 6 MV X-rays for 200 monitor units in Trilogy linear accelerator for 10 cm × 10 cm field size with source to axis distance of 100 cm at 5 cm. A single film was also irradiated without any bone and metal interface for reference data. The absolute dose and the vertical dose profile were measured from the film. There was 10% dose enhancement due to the backscatter radiation just adjacent to the metal-bone interface for all the materials. The extent of the backscatter effect was up to 4 mm. There is significant higher dose enhancement in the soft tissue/skin due to the backscatter radiation from the metallic components in the treatment region.
doi:10.4103/0971-6203.125501
PMCID: PMC3931227  PMID: 24600171
Backscatter; head and neck radiotherapy; linear accelerator; metallic interface; radiochromic films
8.  Radiation dose verification using real tissue phantom in modern radiotherapy techniques 
In vitro dosimetric verification prior to patient treatment has a key role in accurate and precision radiotherapy treatment delivery. Most of commercially available dosimetric phantoms have almost homogeneous density throughout their volume, while real interior of patient body has variable and varying densities inside. In this study an attempt has been made to verify the physical dosimetry in actual human body scenario by using goat head as “head phantom” and goat meat as “tissue phantom”. The mean percentage variation between planned and measured doses was found to be 2.48 (standard deviation (SD): 0.74), 2.36 (SD: 0.77), 3.62 (SD: 1.05), and 3.31 (SD: 0.78) for three-dimensional conformal radiotherapy (3DCRT) (head phantom), intensity modulated radiotherapy (IMRT; head phantom), 3DCRT (tissue phantom), and IMRT (tissue phantom), respectively. Although percentage variations in case of head phantom were within tolerance limit (< ± 3%), but still it is higher than the results obtained by using commercially available phantoms. And the percentage variations in most of cases of tissue phantom were out of tolerance limit. On the basis of these preliminary results it is logical and rational to develop radiation dosimetry methods based on real human body and also to develop an artificial phantom which should truly represent the interior of human body.
doi:10.4103/0971-6203.125504
PMCID: PMC3931228  PMID: 24600172
Head phantom; millennium 80 multileaf collimator system; real tissue; tissue phantom
9.  Establishment of diagnostic reference levels in computed tomography for select procedures in Pudhuchery, India 
Computed tomography (CT) scanner under operating conditions has become a major source of human exposure to diagnostic X-rays. In this context, weighed CT dose index (CTDIw), volumetric CT dose index (CTDIv), and dose length product (DLP) are important parameter to assess procedures in CT imaging as surrogate dose quantities for patient dose optimization. The current work aims to estimate the existing dose level of CT scanner for head, chest, and abdomen procedures in Pudhuchery in south India and establish dose reference level (DRL) for the region. The study was carried out for six CT scanners in six different radiology departments using 100 mm long pencil ionization chamber and polymethylmethacrylate (PMMA) phantom. From each CT scanner, data pertaining to patient and machine details were collected for 50 head, 50 chest, and 50 abdomen procedures performed over a period of 1 year. The experimental work was carried out using the machine operating parameters used during the procedures. Initially, dose received in the phantom at the center and periphery was measured by five point method. Using these values CTDIw, CTDIv, and DLP were calculated. The DRL is established based on the third quartile value of CTDIv and DLP which is 32 mGy and 925 mGy.cm for head, 12 mGy and 456 mGy.cm for chest, and 16 mGy and 482 mGy.cm for abdomen procedures. These values are well below European Commission Dose Reference Level (EC DRL) and comparable with the third quartile value reported for Tamil Nadu region in India. The present study is the first of its kind to determine the DRL for scanners operating in the Pudhuchery region. Similar studies in other regions of India are necessary in order to establish a National Dose Reference Level.
doi:10.4103/0971-6203.125509
PMCID: PMC3931229  PMID: 24600173
Computed tomography; CTDIw; CTDIv; dose length product; dose reference level; pencil ionization chamber; polymethylmethacrylate phantom
11.  Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: Effect of ion chamber calibration and long-term stability 
The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL “dose intercomparison” for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy, and uncertainties are within reported values.
doi:10.4103/0971-6203.121199
PMCID: PMC3959001  PMID: 24672156
Absorbed dose; calibration factor for reference beam; dose delivery; uncertainties in dosimetry
13.  Monte Carlo-based investigation of water-equivalence of solid phantoms at 137Cs energy 
Investigation of solid phantom materials such as solid water, virtual water, plastic water, RW1, polystyrene, and polymethylmethacrylate (PMMA) for their equivalence to liquid water at 137Cs energy (photon energy of 662 keV) under full scatter conditions is carried out using the EGSnrc Monte Carlo code system. Monte Carlo-based EGSnrc code system was used in the work to calculate distance-dependent phantom scatter corrections. The study also includes separation of primary and scattered dose components. Monte Carlo simulations are carried out using primary particle histories up to 5 × 109 to attain less than 0.3% statistical uncertainties in the estimation of dose. Water equivalence of various solid phantoms such as solid water, virtual water, RW1, PMMA, polystyrene, and plastic water materials are investigated at 137Cs energy under full scatter conditions. The investigation reveals that solid water, virtual water, and RW1 phantoms are water equivalent up to 15 cm from the source. Phantom materials such as plastic water, PMMA, and polystyrene phantom materials are water equivalent up to 10 cm. At 15 cm from the source, the phantom scatter corrections are 1.035, 1.050, and 0.949 for the phantoms PMMA, plastic water, and polystyrene, respectively.
doi:10.4103/0971-6203.121192
PMCID: PMC3958994  PMID: 24672149
Brachytherapy; Monte Carlo simulations; solid phantom
14.  Dosimetric comparison between IMRT delivery modes: Step-and-shoot, sliding window, and volumetric modulated arc therapy — for whole pelvis radiation therapy of intermediate-to-high risk prostate adenocarcinoma 
This study was performed to evaluate dosimetric differences between current intensity modulated radiation therapy (IMRT) delivery modes: Step-and-shoot (SS), sliding window (SW), and volumetric modulated arc therapy (VMAT). Plans for 15 prostate cancer patients with 10 MV photon beams using each IMRT mode were generated. Patients had three planning target volumes (PTVs) including prostate, prostate plus seminal vesicles, and pelvic lymphatics. Dose volume histograms (DVHs) of PTVs and organs at risk (OARs), tumor control probability (TCP) and normal tissue complication probabilities (NTCPs), conformation number, and monitor units (MUs) used were compared. Statistical analysis was performed using the analysis of variance (ANOVA) technique. The TCPs were < 99% with insignificant differences among modalities (P > 0.99). Doses to all critical structures were higher on average with SW method compared to SS, but insignificant. NTCP values were lowest for VMAT in all structures excepting bladder. Normal tissue volumes receiving doses in the 20-30 Gy range were reduced for VMAT compared to SS. Percentage of MUs required for VMAT to deliver a comparable plan to SS and SW was at least 40% less. In conclusion, similar target coverage and normal tissue doses were found by the three compared modes and the dosimetric differences were small.
doi:10.4103/0971-6203.121193
PMCID: PMC3958995  PMID: 24672150
Intensity modulated radiation therapy; prostate cancer; step-and-shoot; sliding window; volumetric modulated arc therapy
15.  A study on comparison of Gafchromic EBT2 film response under single and cumulative exposure conditions 
Gafchromic films are used as dosimeter for in vivo and in phantom dose measurements. The dose response of Gafchromic EBT2 film under single and repeated exposure conditions is compared in this study to analyze the usability of Gafchromic EBT2 films in cumulative dose measurements. The post-irradiation change in response of the film is studied for up to 4 days after irradiation. The effect of repeated exposure to scanner light on the response of the film is also studied. To check usability of Gafchromic EBT2 films in cumulative dose measurements, three EBT2 films were exposed to a daily fraction dose of 100 cGy, 150 cGy and 200 cGy, respectively, for 4 days. The dose response of the films exposed to cumulative irradiation was compared with the dose measured from films exposed to the same dose but in a single exposure. It is observed that the post-irradiation darkening of the film does not saturate and continue to take place even 4 days after irradiation. The dose measured from the EBT2 films after 4 days from irradiation was around 2% higher than the dose measured from the same films at 24 hours post-irradiation. It was also observed that the repeated exposure to scanner light does not produce any significant change in the film response. The dose response of films exposed to cumulative irradiation agrees with the dose response of films exposed to the same dose in a single irradiation with less than 3% difference. Gafchromic EBT2 films can be used to measure the cumulative dose delivered over multiple fractions, when the delivered dose is uniform across the film.
doi:10.4103/0971-6203.121194
PMCID: PMC3958996  PMID: 24672151
Gafchromic EBT2 film; Post irradiation darkening of EBT2 film; Re usability of EBT2 film
16.  Study of positional dependence of dose to bladder, pelvic wall and rectal points in High-Dose-Rate Brachytherapy in cervical cancer patients 
The objective of the study is to examine the variation in doses to, Bladder, pelvic wall and Rectal Points when a patient is simulated in Supine (S Position) and Lithotomy M shaped positions (LM Position), respectively as part of Intracavitary Brachytherapy in Cervical Cancer patients. Patients (n = 19) were simulated and orthogonal images were taken in S Position and LM Positions on a physical simulator. Digital orthogonal X-ray images were transferred to Brachyvision Treatment Planning System via Dicom to generate treatment plans. Radio opaque dye of 7 ml was injected into the Foley bulb for identification and digitization of International Commission on Radiological Units and Measurements (ICRU) Bladder point. Pelvic side wall points were marked in accordance with ICRU 38 recommendations. A Rectal tube containing dummy source marker wire was used to identify Rectal Point. Students’t-test was used to analyze the results. Doses in LM Position were lower and statistically significant when compared to S Position for ICRU Bladder Point, pelvic walls and Rectal Point. It was observed that movement of applicator could be the reason for the variations in doses between the two positions. Bladder, pelvic wall and rectal points systematically registered lower doses in LM Position as compared to S Position.
doi:10.4103/0971-6203.121195
PMCID: PMC3958997  PMID: 24672152
Bladder; lithotomy; rectum; supine
17.  Radiation dose estimation of patients undergoing lumbar spine radiography 
Radiation dose to organs of 100 adult patients undergoing lumbar spine (LS) radiography at a University Hospital have been assessed. Free in air kerma measurement using an ionization chamber was used for the patient dosimetry. Organ and effective dose to the patients were estimated using PCXMC (version 1.5) software. The organs that recorded significant dose due to LS radiography were lungs, stomach, liver, adrenals, kidney, pancreas, spleen, galbladder, and the heart. It was observed that the stomach recorded the highest dose (48.2 ± 1.2 μGy) for LS anteroposterior (AP). The spleen also recorded the highest dose (41.2 ± 0.5 μGy) for LS lateral (LAT). The mean entrance surface air kerma (ESAK) of LS LAT (122.2 μGy) was approximately twice that of LS AP (76.3 μGy), but the effective dose for both examinations were approximately the same (LS LAT = 8.6 μSv and LS AP = 10.4 μSv). The overall stochastic health effect of radiation to patients due to LS radiography in the University Hospital is independent of the projection of the examination (AP or LAT).
doi:10.4103/0971-6203.121196
PMCID: PMC3958998  PMID: 24672153
Conventional X-ray; effective dose; lumbar spine; organ dose; radiography
18.  Evaluation of six scatter correction methods based on spectral analysis in 99mTc SPECT imaging using SIMIND Monte Carlo simulation 
Compton-scattered photons included within the photopeak pulse-height window result in the degradation of SPECT images both qualitatively and quantitatively. The purpose of this study is to evaluate and compare six scatter correction methods based on setting the energy windows in 99mTc spectrum. SIMIND Monte Carlo simulation is used to generate the projection images from a cold-sphere hot-background phantom. For evaluation of different scatter correction methods, three assessment criteria including image contrast, signal-to-noise ratio (SNR) and relative noise of the background (RNB) are considered. Except for the dual-photopeak window (DPW) method, the image contrast of the five cold spheres is improved in the range of 2.7-26%. Among methods considered, two methods show a nonuniform correction performance. The RNB for all of the scatter correction methods is ranged from minimum 0.03 for DPW method to maximum 0.0727 for the three energy window (TEW) method using trapezoidal approximation. The TEW method using triangular approximation because of ease of implementation, good improvement of the image contrast and the SNR for the five cold spheres, and the low noise level is proposed as most appropriate correction method.
doi:10.4103/0971-6203.121197
PMCID: PMC3958999  PMID: 24672154
SPECT; scatter correction; 99mTc spectrum; energy windows; Monte Carlo simulation
19.  Superparamagnetic iron oxide-C595: Potential MR imaging contrast agents for ovarian cancer detection 
Superparamagnetic iron oxide nanoparticles (SPIONs), have played an important role in the promotion of image contrast in magnetic resonance imaging modality. The objective of present study is describing SPIONs conjugated with C595 monoclonal antibody (mAb) against MUC1-expressing ovarian cancer (OVCAR3) cell. Magnetic resonance imaging parameters of the prepared nanoconjugate was investigated in vitro: characterization, cell toxicity, flow cytometry, Prussian blue staining, and cellular uptake as well as biodistribution and magnetic resonance signal intensities under in vivo conditions were also investigated. Magnetic resonance imaging and biodistribution results showed good tumor accumulation and detection, no cytotoxicity, and potential selective as anti-ovarian cancer. In conclusion, based on the findings SPIONs-C595 nanosized-probe is potentially, a selective ovarian molecular imaging tool. Further subsequent in vivo studies and clinical trials are warranted.
doi:10.4103/0971-6203.121198
PMCID: PMC3959000  PMID: 24672155
Flow cytometry; magnetic nanoparticles; magnetic resonance imaging; OVCAR3
22.  Improvement of dose distribution with irregular surface compensator in whole breast radiotherapy 
Aim of this study was to compare the dosimetric aspects of whole breast radiotherapy (WBRT) between an irregular surface compensator (ISC) and a conventional tangential field technique using physical wedges. Treatment plans were produced for 20 patients. The Eclipse treatment planning system (Varian Medical Systems) was used for the dose calculation: For the physical wedge technique, the wedge angle was selected to provide the best dose homogeneity; for the ISC technique, the fluence editor application was used to extend the optimal fluence. These two treatment plans were compared in terms of doses in the planning target volume, the dose homogeneity index, the maximum dose, ipsilateral lung and heart doses for left breast irradiation, and the monitor unit counts required for treatment. Compared with the physical wedge technique, the ISC technique significantly reduced the dose homogeneity index, the maximum dose, the volumes received at 105% of the prescription dose, as well as reducing both the ipsilateral lung and heart doses (P < 0.01 for all comparisons). However, the monitor unit counts were not significantly different between the techniques (P > 0.05). Thus, the ISC technique for WBRT enables significantly better dose distribution in the planning target volume.
doi:10.4103/0971-6203.116361
PMCID: PMC3775034  PMID: 24049317
Dose distribution; irregular surface compensator technique; physical wedge technique; whole breast radiotherapy
23.  Comparative analysis between 5 mm and 7.5 mm collimators in CyberKnife radiosurgery for trigeminal neuralgia 
Trigeminal neuralgia (TN) is treated in CyberKnife (Accuray Inc, Sunnyvale, USA) with the 5 mm collimator whose dosimetric inaccuracy is higher than the other available collimators. The 7.5 mm collimator which is having less dosimetric uncertainty can be an alternative for 5 mm collimator provided the dose distribution with 7.5 mm collimator is acceptable. Aim of this study is to analyze the role of 7.5 mm collimator in CyberKnife treatment plans of TN. The treatment plans with 5 mm collimators were re-optimized with 7.5 mm collimator and a bi-collimator system (5 mm and 7.5 mm). The treatment plans were compared for target coverage, brainstem doses, and the dose to normal tissues. The target and brainstem doses were comparable. However, the conformity indices were 2.31 ± 0.52, 2.40 ± 0.87 and 2.82 ± 0.51 for 5 mm, bi-collimator (5mm and 7.5 mm), 7.5 mm collimator plans respectively. This shows the level of dose spillage in 7.5 mm collimator plans. The 6 Gy dose volumes in 7.5 mm plans were 1.53 and 1.34 times higher than the 5 mm plan and the bi-collimator plans respectively. The treatment time parameters were lesser for 7.5 mm collimators. Since, the normal tissue dose is pretty high in 7.5 mm collimator plans, the use of it in TN plans can be ruled out though the treatment time is lesser for these 7.5 mm collimator plans.
doi:10.4103/0971-6203.116364
PMCID: PMC3775035  PMID: 24049318
Collimators; CyberKnife; stereotactic radiosurgery; trigeminal neuralgia
24.  Forward-planned intensity modulated radiation therapy using a cobalt source: A dosimetric study in breast cancer 
This analysis evaluates the feasibility and dosimetric results of a simplified intensity-modulated radiotherapy (IMRT) treatment using a cobalt-therapy unit for post-operative breast cancer. Fourteen patients were included. Three plans per patient were produced by a cobalt-60 source: A standard plan with two wedged tangential beams, a standard tangential plan optimized without the use of wedges and a plan based on the forward-planned “field-in-field” IMRT technique (Co-FinF) where the dose on each of the two tangential beams was split into two different segments and the two segments weight was determined with an iterative process. For comparison purposes, a 6-MV photon standard wedged tangential treatment plan was generated. Dmean, D98%, D2%, V95%, V107%, homogeneity, and conformity indices were chosen as parameters for comparison. Co-FinF technique improved the planning target volume dose homogeneity compared to other cobalt-based techniques and reduced maximum doses (D2%) and high-dose volume (V110%). Moreover, it showed a better lung and heart dose sparing with respect to the standard approach. The higher dose homogeneity may encourage the adoption of accelerated-hypofractionated treatments also with the cobalt sources. This approach can promote the spread of breast conservative treatment in developing countries.
doi:10.4103/0971-6203.116367
PMCID: PMC3775036  PMID: 24049319
Breast neoplasms; cobalt machine; intensity-modulated radiotherapy; radiotherapy
25.  A study on rectal dose measurement in phantom and in vivo using Gafchromic EBT3 film in IMRT and CyberKnife treatments of carcinoma of prostate 
The objective of this study is to check the feasibility of in vivo rectal dose measurement in intensity-modulated radiotherapy (IMRT) and CyberKnife treatments for carcinoma prostate. An in-house pelvis phantom made with bee's wax was used in this study. Two cylindrical bone equivalent materials were used to simulate the femur. Target and other critical structures associated with carcinoma prostate were delineated on the treatment planning images by the radiation oncologist. IMRT treatment plan was generated in Oncentra Master Plan treatment planning system and CyberKnife treatment plan was generated in Multiplan treatment planning system. Dose measurements were carried out in phantom and in patient using Gafchromic EBT3 films. RIT software was used to analyze the dose measured by EBT3 films. The measured doses using EBT3 films were compared with the TPS-calculated dose along the anterior rectal wall at multiple points. From the in-phantom measurements, it is observed that the difference between calculated and measured dose was mostly within 5%, except for a few measurement points. The difference between calculated and measured dose in the in-patient measurements was higher than 5% in regions which were away from the target. Gafchromic EBT3 film is a suitable detector for in vivo rectal dose measurements as it offers the possibility of analyzing the dose at multiple points. In addition, the method of extending this in vivo rectal dose measurement technique as a tool for patient-specific quality assurance check is also analyzed.
doi:10.4103/0971-6203.116372
PMCID: PMC3775037  PMID: 24049320
Gafchromic EBT3; in vivo dosimetry; rectal dose measurement

Results 1-25 (286)