PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1170)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
issn:1940-087
1.  Electroporation of Functional Bacterial Effectors into Mammalian Cells 
The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high-throughput characterization of pathogen proteins in host cells including subcellular targeting and function of virulence proteins.
doi:10.3791/52296
PMCID: PMC4331347  PMID: 25650771
Immunology; Issue 95; electroporation; protein; transfection; expression; localization; confocal microscopy; Salmonella; effector
2.  Using Microfluidics Chips for Live Imaging and Study of Injury Responses in Drosophila Larvae 
Live imaging is an important technique for studying cell biological processes, however this can be challenging in live animals. The translucent cuticle of the Drosophila larva makes it an attractive model organism for live imaging studies. However, an important challenge for live imaging techniques is to noninvasively immobilize and position an animal on the microscope. This protocol presents a simple and easy to use method for immobilizing and imaging Drosophila larvae on a polydimethylsiloxane (PDMS) microfluidic device, which we call the 'larva chip'. The larva chip is comprised of a snug-fitting PDMS microchamber that is attached to a thin glass coverslip, which, upon application of a vacuum via a syringe, immobilizes the animal and brings ventral structures such as the nerve cord, segmental nerves, and body wall muscles, within close proximity to the coverslip. This allows for high-resolution imaging, and importantly, avoids the use of anesthetics and chemicals, which facilitates the study of a broad range of physiological processes. Since larvae recover easily from the immobilization, they can be readily subjected to multiple imaging sessions. This allows for longitudinal studies over time courses ranging from hours to days. This protocol describes step-by-step how to prepare the chip and how to utilize the chip for live imaging of neuronal events in 3rd instar larvae. These events include the rapid transport of organelles in axons, calcium responses to injury, and time-lapse studies of the trafficking of photo-convertible proteins over long distances and time scales. Another application of the chip is to study regenerative and degenerative responses to axonal injury, so the second part of this protocol describes a new and simple procedure for injuring axons within peripheral nerves by a segmental nerve crush.
doi:10.3791/50998
PMCID: PMC4117361  PMID: 24562098
Bioengineering; Issue 84; Drosophila melanogaster; Live Imaging; Microfluidics; axonal injury; axonal degeneration; calcium imaging; photoconversion; laser microsurgery
3.  A novel microdissection approach to recovering Mycobacterium tuberculosis-specific transcripts from formalin fixed paraffin embedded lung granulomas 
SHORT ABSTRACT
Microdissection has been extensively employed for the examination of DNA, RNA, and protein within tissue. Laser capture microscopy (LCM) is the most commonly used method, but a new milling technique, mesodissection, has recently now available. We demonstrate RNA extraction from mesodissected formalin fixed paraffin embedded tissue slides of Mycobacterium tuberculosis granulomas derived from experimentally infected nonhuman primates.
LONG ABSTRACT
Microdissection has been used for the examination of tissues at DNA, RNA, and protein levels for over a decade. Laser Capture Microscopy (LCM) is the most common microdissection technique used today. In this technique, a laser is used to focally melt a thermoplastic membrane that overlies a dehydrated tissue section(1). The tissue section composite is then lifted and separated from the membrane. Although this technique can be used successfully for tissue examination, it is time consuming and expensive. Furthermore, the successful completion of procedures using this technique requires the use of a laser, thus limit its efficient use. A new more affordable and practical microdissection approach called mesodissection is a possible solution to the pitfalls of LCM. This technique employs the MESO-1/MeSectr system to mill the desired tissue from a slide mounted tissue sample while concurrently dispensing and aspirating fluid to recover the desired tissue sample into a consumable mil bit. Before the dissection process begins, the user aligns the formalin fixed paraffin embedded (FFPE) slide with a hemotoxylin and eosin stained (H and E) reference slide. Thereafter, the operator annotates the desired dissection area and proceeds to dissect the appropriate segment. The program generates an archived image of the dissection. The main advantage of mesodissection is the short duration needed to dissect a slide, taking an average of ten minutes from set up to sample generation in this experiment. Additionally, the system is significantly more cost effective and user friendly. A slight disadvantage of the system is that it is not as precise as laser capture microscopy. In this article we demonstrate how mesodissection can be used to extract RNA from slides from FFPE granulomas caused by Mycobacterium tuberculosis (Mtb). Tuberculosis (TB) is a major infectious disease killer of humanity worldwide and results from infection with Mtb. In a majority of individuals exposed to the aerosols of Mtb, the infection is latently limited but in at least 10 million people annually, it results in active TB disease(2). During latent infection, Mtb is contained within pathological lung lesions known as the granuloma. Hence, it has been argued that the outcome of Mtb infections is decided at the level of the granuloma(3).
doi:10.3791/51693
PMCID: PMC4186700  PMID: 24962586
Microdissection; mesodissection; formalin fixed paraffin embedded; MESO-1; Mycobacterium tuberculosis; laser capture
4.  Reai-time imaging of Myeioid Ceiis Dynamics in ApcMin/+ intestinai Tumors by Spinning Disk Confocai Microscopy 
Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocai microscope that allows long-term continuous imaging with rapid image acquisition has been used. ApcMin/+ Spc mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.
doi:10.3791/51916
PMCID: PMC4318091  PMID: 25350573
Cancer Biology; Issue 92; intravital imaging; spinning disk confocal; ApcMin/+ mice; colorectal cancer; tumors; myeloid cells
5.  Measuring Spatial and Temporal Ca2+ Signals in Arabidopsis Plants 
Developmental and environmental cues induce Ca2+ fluctuations in plant cells. Stimulus-specific spatial-temporal Ca2+ patterns are sensed by cellular Ca2+ binding proteins that initiate Ca2+ signaling cascades. However, we still know little about how stimulus specific Ca2+ signals are generated. The specificity of a Ca2+ signal may be attributed to the sophisticated regulation of the activities of Ca2+ channels and/or transporters in response to a given stimulus. To identify these cellular components and understand their functions, it is crucial to use systems that allow a sensitive and robust recording of Ca2+ signals at both the tissue and cellular levels. Genetically encoded Ca2+ indicators that are targeted to different cellular compartments have provided a platform for live cell confocal imaging of cellular Ca2+ signals. Here we describe instructions for the use of two Ca2+ detection systems: aequorin based FAS (film adhesive seedlings) luminescence Ca2+ imaging and case12 based live cell confocal fluorescence Ca2+ imaging. Luminescence imaging using the FAS system provides a simple, robust and sensitive detection of spatial and temporal Ca2+ signals at the tissue level, while live cell confocal imaging using Case12 provides simultaneous detection of cytosolic and nuclear Ca2+ signals at a high resolution.
doi:10.3791/51945
PMCID: PMC4307379  PMID: 25226381
Plant Biology; Issue 91; Aequorin; Case12; abiotic stress; heavy metal stress; copper ion; calcium imaging; Arabidopsis
6.  Isolation and preparation of bacterial cell walls for compositional analysis by Ultra Performance Liquid Chromatography 
The bacterial cell wall is critical for the determination of cell shape during growth and division, and maintains the mechanical integrity of cells in the face of turgor pressures several atmospheres in magnitude. Across the diverse shapes and sizes of the bacterial kingdom, the cell wall is composed of peptidoglycan, a macromolecular network of sugar strands crosslinked by short peptides. Peptidoglycan's central importance to bacterial physiology underlies its use as an antibiotic target and has motivated genetic, structural, and cell biological studies of how it is robustly assembled during growth and division. Nonetheless, extensive investigations are still required to fully characterize the key enzymatic activities in peptidoglycan synthesis and the chemical composition of bacterial cell walls. High Performance Liquid Chromatography (HPLC) is a powerful analytical method for quantifying differences in the chemical composition of the walls of bacteria grown under a variety of environmental and genetic conditions, but its throughput is often limited. Here, we present a straightforward procedure for the isolation and preparation of bacterial cell walls for biological analyses of peptidoglycan via HPLC and Ultra Performance Liquid Chromatography (UPLC), an extension of HPLC that utilizes pumps to deliver ultra-high pressures of up to 15000 psi, compared with 6000 psi for HPLC. In combination with the preparation of bacterial cell walls presented here, the low-volume sample injectors, detectors with high sampling rates, smaller sample volumes, and shorter run times of UPLC will enable high resolution and throughput for novel discoveries of peptidoglycan composition and fundamental bacterial cell biology in most biological laboratories with access to an ultracentrifuge and UPLC.
doi:10.3791/51183
PMCID: PMC3987682  PMID: 24457605
peptidoglycan; cell shape; bacterial cell wall; UPLC; HPLC; morphogenesis
7.  Live Imaging of Drosophila Larval Neuroblasts 
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications.
doi:10.3791/51756
PMCID: PMC4129452  PMID: 25046336
Neuroscience; Issue 89; live imaging; Drosophila; neuroblast; stem cell; asymmetric division; centrosome; brain; cell cycle; mitosis
8.  3D Orbital Tracking in a Modified Two-photon Microscope: An Application to the Tracking of Intracellular Vesicles 
The objective of this video protocol is to discuss how to perform and analyze a three-dimensional fluorescent orbital particle tracking experiment using a modified two-photon microscope1. As opposed to conventional approaches (raster scan or wide field based on a stack of frames), the 3D orbital tracking allows to localize and follow with a high spatial (10 nm accuracy) and temporal resolution (50 Hz frequency response) the 3D displacement of a moving fluorescent particle on length-scales of hundreds of microns2. The method is based on a feedback algorithm that controls the hardware of a two-photon laser scanning microscope in order to perform a circular orbit around the object to be tracked: the feedback mechanism will maintain the fluorescent object in the center by controlling the displacement of the scanning beam3-5. To demonstrate the advantages of this technique, we followed a fast moving organelle, the lysosome, within a living cell6,7. Cells were plated according to standard protocols, and stained using a commercially lysosome dye. We discuss briefly the hardware configuration and in more detail the control software, to perform a 3D orbital tracking experiment inside living cells. We discuss in detail the parameters required in order to control the scanning microscope and enable the motion of the beam in a closed orbit around the particle. We conclude by demonstrating how this method can be effectively used to track the fast motion of a labeled lysosome along microtubules in 3D within a live cell. Lysosomes can move with speeds in the range of 0.4-0.5 µm/sec, typically displaying a directed motion along the microtubule network8.
doi:10.3791/51794
PMCID: PMC4274936  PMID: 25350070
Bioengineering; Issue 92; fluorescence; single particle tracking; laser scanning microscope; two-photon; vesicle transport; live-cell imaging; optics
9.  Intravital Imaging of Axonal Interactions with Microglia and Macrophages in a Mouse Dorsal Column Crush Injury 
Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column. Here, we describe methods for distinguishing macrophages from microglia in the CNS using an irradiation bone marrow chimera to obtain animals in which only macrophages or microglia are labeled with a genetically encoded green fluorescent protein. We also describe a injury model that crushes the dorsal column of the spinal cord, thereby producing a simple, easily accessible, rectangular lesion that is easily visualized in an animal through a laminectomy. Furthermore, we will outline procedures to sequentially image the animals at the anatomical site of injury for the study of cellular interactions during the first few days to weeks after injury.
doi:10.3791/52228
PMCID: PMC4275021  PMID: 25489963
Cellular Biology; Issue 93; Intravital; spinal cord crush injury; chimera; microglia; macrophages; dorsal column crush; axonal dieback
10.  Subtype-selective electroporation of cortical interneurons 
The study of central nervous system (CNS) maturation relies on genetic targeting of neuronal populations. However, the task of restricting the expression of genes of interest to specific neuronal subtypes has proven remarkably challenging due to the relative scarcity of specific promoter elements. GABAergic interneurons constitute a neuronal population with extensive genetic and morphological diversity. Indeed, more than 11 different subtypes of GABAergic interneurons have been characterized in the mouse cortex1. Here we present an adapted protocol for selective targeting of GABAergic populations. We achieved subtype-selective targeting of GABAergic interneurons by using the enhancer element of the homeobox transcription factors Dlx5 and Dlx6, homologues of the Drosophila distal-less (Dll) gene2,3, to drive the expression of specific genes through in utero electroporation.
doi:10.3791/51518
PMCID: PMC4243608  PMID: 25177832
Development; mouse; cortex; interneurons; electroporation; morphology
11.  Regular Care and Maintenance of a Zebrafish (Danio rerio) Laboratory: An Introduction 
This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model.
doi:10.3791/4196
PMCID: PMC3916945  PMID: 23183629
Basic Protocols; Issue 69; Biology; Marine Biology; Zebrafish; Danio rerio; maintenance; breeding; feeding; raising; larvae; animal model; aquarium
12.  Cell Squeezing as a Robust, Microfluidic Intracellular Delivery Platform 
Rapid mechanical deformation of cells has emerged as a promising, vector-free method for intracellular delivery of macromolecules and nanomaterials. This technology has shown potential in addressing previously challenging applications; including, delivery to primary immune cells, cell reprogramming, carbon nanotube, and quantum dot delivery. This vector-free microfluidic platform relies on mechanical disruption of the cell membrane to facilitate cytosolic delivery of the target material. Herein, we describe the detailed method of use for these microfluidic devices including, device assembly, cell preparation, and system operation. This delivery approach requires a brief optimization of device type and operating conditions for previously unreported applications. The provided instructions are generalizable to most cell types and delivery materials as this system does not require specialized buffers or chemical modification/conjugation steps. This work also provides recommendations on how to improve device performance and trouble-shoot potential issues related to clogging, low delivery efficiencies, and cell viability.
doi:10.3791/50980
PMCID: PMC3976289  PMID: 24300077
Bioengineering; Issue 81; Transfection; microfluidic; vector-free; protein delivery; intracellular delivery; quantum dot delivery; cell reprogramming; siRNA
13.  Regioselective Biolistic Targeting in Organotypic Brain Slices Using a Modified Gene Gun 
Transfection of DNA has been invaluable for biological sciences and with recent advances to organotypic brain slice preparations, the effect of various heterologous genes could thus be investigated easily while maintaining many aspects of in vivo biology. There has been increasing interest to transfect terminally differentiated neurons for which conventional transfection methods have been fraught with difficulties such as low yields and significant losses in viability. Biolistic transfection can circumvent many of these difficulties yet only recently has this technique been modified so that it is amenable for use in mammalian tissues.
New modifications to the accelerator chamber have enhanced the gene gun's firing accuracy and increased its depths of penetration while also allowing the use of lower gas pressure (50 psi) without loss of transfection efficiency as well as permitting a focused regioselective spread of the particles to within 3 mm. In addition, this technique is straight forward and faster to perform than tedious microinjections. Both transient and stable expression are possible with nanoparticle bombardment where episomal expression can be detected within 24 hr and the cell survival was shown to be better than, or at least equal to, conventional methods. This technique has however one crucial advantage: it permits the transfection to be localized within a single restrained radius thus enabling the user to anatomically isolate the heterologous gene's effects. Here we present an in-depth protocol to prepare viable adult organotypic slices and submit them to regioselective transfection using an improved gene gun.
doi:10.3791/52148
PMCID: PMC4249736  PMID: 25407047
Neuroscience; Issue 92; Biolistics; gene gun; organotypic brain slices; Diolistic; gene delivery; staining
14.  Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease 
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
doi:10.3791/51827
PMCID: PMC4207632  PMID: 25178094
Behavior; Issue 90; Exercise; locomotor; Parkinson’s disease; aging; treadmill; bradykinesia; Parkinsonism
15.  Production and Targeting of Monovalent Quantum Dots 
The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety.
doi:10.3791/52198
PMCID: PMC4309134  PMID: 25407345
Bioengineering; Issue 92; monovalent quantum dots; single particle tracking; SNAP tag; steric exclusion; phosphorothioate; DNA; nanoparticle bioconjugation; single molecule imaging
16.  Models and Methods to Evaluate Transport of Drug Delivery Systems Across Cellular Barriers 
Short Abstract
Many therapeutic applications require safe and efficient transport of drug carriers and their cargoes across cellular barriers in the body. This article describes an adaptation of established methods to evaluate the rate and mechanism of transport of drug nanocarriers (NCs) across cellular barriers, such as the gastrointestinal (GI) epithelium.
Long Abstract
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation or transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200-nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with 125I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free 125I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.
doi:10.3791/50638
PMCID: PMC3947959  PMID: 24192611
Drug delivery systems; targeted nanocarriers; transcellular transport; epithelial cells; tight junctions; transepithelial electrical resistance; endocytosis; transcytosis; radioisotope tracing; immunostaining
17.  Systematic Analysis of In Vitro Cell Rolling Using a Multi-well Plate Microfluidic System 
A major challenge for cell-based therapy is the inability to systemically target a large quantity of viable cells with high efficiency to tissues of interest following intravenous or intraarterial infusion. Consequently, increasing cell homing is currently studied as a strategy to improve cell therapy. Cell rolling on the vascular endothelium is an important step in the process of cell homing and can be probed in-vitro using a parallel plate flow chamber (PPFC). However, this is an extremely tedious, low throughput assay, with poorly controlled flow conditions. Instead, we used a multi-well plate microfluidic system that enables study of cellular rolling properties in a higher throughput under precisely controlled, physiologically relevant shear flow1,2. In this paper, we show how the rolling properties of HL-60 (human promyelocytic leukemia) cells on P- and E-selectin-coated surfaces as well as on cell monolayer-coated surfaces can be readily examined. To better simulate inflammatory conditions, the microfluidic channel surface was coated with endothelial cells (ECs), which were then activated with tumor necrosis factor-α (TNF-α), significantly increasing interactions with HL-60 cells under dynamic conditions. The enhanced throughput and integrated multi-parameter software analysis platform, that permits rapid analysis of parameters such as rolling velocities and rolling path, are important advantages for assessing cell rolling properties in-vitro. Allowing rapid and accurate analysis of engineering approaches designed to impact cell rolling and homing, this platform may help advance exogenous cell-based therapy.
doi:10.3791/50866
PMCID: PMC3892982  PMID: 24193253
Bioengineering; Issue 80; Microfluidics; Endothelial Cells; Leukocyte Rolling; HL-60 cells; TNF-α; P-selectin; E-selectin
18.  The Submerged Printing of Cells onto a Modified Surface Using a Continuous Flow Microspotter 
SHORT ABSTRACT
This 3D microfluidic printing technology prints arrays of cells onto submerged surfaces. Here we describe how array of cells are delivered microfluidically in 3D flow cells onto submerged surfaces. By printing onto submerged surfaces, cell microarrays were produced that allow for drug screening and cytotoxicity assessment in a multitude of areas including cancer, diabetes, inflammation, infections, and cardiovascular disease.
LONG ABSTRACT
The printing of cells for microarray applications possesses significant challenges including the problem of maintaining physiologically relevant cell phenotype after printing, poor organization/distribution of desired cells, and the inability to deliver drugs and/or nutrients to targeted areas in the array. Our 3D microfluidic printing technology is uniquely capable of sealing and printing arrays of cells onto submerged surfaces in an automated and multiplexed manner. The design of the microfluidic cell array (MFCA) 3D fluidics enables the printhead tip to be lowered into a liquid-filled well or dish and compressed against a surface to form a seal. The soft silicone tip of the printhead behaves like a gasket and is able to form a reversible seal by applying pressure or backing away. Other cells printing technologies such as pin or ink-jet printers are unable to print in submerged applications. Submerged surface printing is essential to maintain phentotypes of cells and to monitor these cells on a surface without disturbing the material surface characteristics. By printing onto submerged surfaces, cell microarrays are produced that allow for drug screening and cytotoxicity assessment in a multitude of areas including cancer, diabetes, inflammation, infections, and cardiovascular disease.
doi:10.3791/51273
PMCID: PMC4174760  PMID: 24796939
19.  Using plusTipTracker software to measure microtubule dynamics in Xenopus laevis growth cones 
Microtubule (MT) plus-end-tracking proteins (+TIPs) localize to the growing plus-ends of MTs and regulate MT dynamics1,2. One of the most well-known and widely-utilized +TIPs for analyzing MT dynamics is the End-Binding protein, EB1, which binds all growing MT plus-ends, and thus, is a marker for MT polymerization1. Many studies of EB1 behavior within growth cones have used time-consuming and biased computer-assisted, hand-tracking methods to analyze individual MTs1-3. Our approach is to quantify global parameters of MT dynamics using the software package, plusTipTracker4, following the acquisition of high-resolution, live images of tagged EB1 in cultured embryonic growth cones5. This software is a Matlab-based, open-source, user-friendly package that combines automated detection, tracking, visualization, and analysis for movies of fluorescently-labeled +TIPs. Here, we present the protocol for using plusTipTracker for the analysis of fluorescently-labeled +TIP comets in cultured Xenopus laevis growth cones. However, this software can also be used to characterize MT dynamics in various cell types6-8.
doi:10.3791/52138
PMCID: PMC4189079  PMID: 25225829
plusTipTracker; microtubule plus-end-tracking proteins; EB1; growth cone; Xenopus laevis; live cell imaging analysis; microtubule dynamics
20.  Assessing species-specific contributions to craniofacial development using quail-duck chimeras 
Short Abstract
This article describes a method to generate chimeric embryos that is designed to test the species-specific contributions of neural crest and/or other tissues to craniofacial development.
Long Abstract
The generation of chimeric embryos is a widespread and powerful approach to study cell fates, tissue interactions, and species-specific contributions to the histological and morphological development of vertebrate embryos. In particular, use of chimeric embryos has established the importance of neural crest in directing the species-specific morphology of the craniofacial complex. The method described herein utilizes two avian species, duck and quail, with remarkably different craniofacial morphology. This method greatly facilitates the investigation of molecular and cellular regulation of species-specific pattern in the craniofacial complex. Experiments in quail and duck chimeric embryos have already revealed neural crest-mediated tissue interactions and cell-autonomous behaviors that regulate species-specific pattern in the craniofacial skeleton, musculature, and integument. The great diversity of neural crest derivatives suggests significant potential for future applications of the quail-duck chimeric system to understanding vertebrate development, disease, and evolution.
doi:10.3791/51534
PMCID: PMC4182100  PMID: 24962088
neural crest; quail-duck chimeras; craniofacial development; epithelial-mesenchymal interactions; tissue transplants; evolutionary developmental biology
21.  Imaging Centrosomes in Fly Testes 
Centrosomes are conserved microtubule-based organelles whose structure and function change dramatically throughout the cell cycle and cell differentiation. Centrosomes are essential to determine the cell division axis during mitosis and to nucleate cilia during interphase. The identity of the proteins that mediate these dynamic changes remains only partially known, and the function of many of the proteins that have been implicated in these processes is still rudimentary. Recent work has shown that Drosophila spermatogenesis provides a powerful system to identify new proteins critical for centrosome function and formation as well as to gain insight into the particular function of known players in centrosome-related processes. Drosophila is an established genetic model organism where mutants in centrosomal genes can be readily obtained and easily analyzed. Furthermore, recent advances in the sensitivity and resolution of light microscopy and the development of robust genetically tagged centrosomal markers have transformed the ability to use Drosophila testes as a simple and accessible model system to study centrosomes. This paper describes the use of genetically-tagged centrosomal markers to perform genetic screens for new centrosomal mutants and to gain insight into the specific function of newly identified genes.
doi:10.3791/50938
PMCID: PMC3885179  PMID: 24084634
Centrosome; Spermatogenesis; Spermiogenesis; Drosophila; Centriole; Cilium; Mitosis; Meiosis
22.  An Orthotopic Murine Model of Human Prostate Cancer Metastasis 
Our laboratory has developed a novel orthotopic implantation model of human prostate cancer (PCa). As PCa death is not due to the primary tumor, but rather the formation of distinct metastasis, the ability to effectively model this progression pre-clinically is of high value. In this model, cells are directly implanted into the ventral lobe of the prostate in Balb/c athymic mice, and allowed to progress for 4-6 weeks. At experiment termination, several distinct endpoints can be measured, such as size and molecular characterization of the primary tumor, the presence and quantification of circulating tumor cells in the blood and bone marrow, and formation of metastasis to the lung. In addition to a variety of endpoints, this model provides a picture of a cells ability to invade and escape the primary organ, enter and survive in the circulatory system, and implant and grow in a secondary site. This model has been used effectively to measure metastatic response to both changes in protein expression as well as to response to small molecule therapeutics, in a short turnaround time.
doi:10.3791/50873
PMCID: PMC3814297  PMID: 24084571
Medicine; Issue 79; Urogenital System; Male Urogenital Diseases; Surgical Procedures; Operative; Life Sciences (General); Prostate Cancer; Metastasis; Mouse Model; Drug Discovery; Molecular Biology
23.  Optimized Protocol for Retinal Wholemount Preparation for Imaging and Immunohistochemistry 
Working with delicate tissue can be a complicating factor when performing immunohistochemical assessment. Here, we present a method that utilizes a ring-supported hydrophilized PTFE membrane to provide structural support to both living and fixed tissue during immunohistochemical processing, which allows for the use of a variety of protocols that would otherwise cause damage to the tissue. First, this is demonstrated with bolus loading of fluorescent markers into living retinal tissue. This method allows for quick visualization of targeted structures, while the membrane support maintains tissue integrity during the injection and allows for easy transfer of the preparation for further imaging or processing.
Second, a procedure for antibody staining in tissue fixed with carbodiimide is described. Though paraformaldehyde fixation is more common, carbodiimide fixation provides a superior substrate for the visualization of synaptic proteins. A limitation of carbodiimide is that the resulting fixed tissue is relatively fragile; however, this is overcome with the use of the supporting membrane. Retinal tissue is used to demonstrate these techniques, but they may be applied to any fragile tissue.
doi:10.3791/51018
PMCID: PMC4048354  PMID: 24379013
Basic Protocol; Issue 82; hydrophilized PTFE membrane; retina; bolus loading; carbodiimide fixation; immunohistochemistry; antibody staining; microscopy
24.  Formation of Human Prostate Epithelium Using Tissue Recombination of Rodent Urogenital Sinus Mesenchyme and Human Stem Cells 
Progress in prostate cancer research is severely limited by the availability of human-derived and hormone-naïve model systems, which limit our ability to understand genetic and molecular events underlying prostate disease initiation. Toward developing better model systems for studying human prostate carcinogenesis, we and others have taken advantage of the unique pro-prostatic inductive potential of embryonic rodent prostate stroma, termed urogenital sinus mesenchyme (UGSM). When recombined with certain pluripotent cell populations such as embryonic stem cells, UGSM induces the formation of normal human prostate epithelia in a testosterone-dependent manner. Such a human model system can be used to investigate and experimentally test the ability of candidate prostate cancer susceptibility genes at an accelerated pace compared to typical rodent transgenic studies. Since Human embryonic stem cells (hESCs) can be genetically modified in culture using inducible gene expression or siRNA knock-down vectors prior to tissue recombination, such a model facilitates testing the functional consequences of genes, or combinations of genes, which are thought to promote or prevent carcinogenesis.
The technique of isolating pure populations of UGSM cells, however, is challenging and learning often requires someone with previous expertise to personally teach. Moreover, inoculation of cell mixtures under the renal capsule of an immunocompromised host can be technically challenging. Here we outline and illustrate proper isolation of UGSM from rodent embryos and renal capsule implantation of tissue mixtures to form human prostate epithelium. Such an approach, at its current stage, requires in vivo xenografting of embryonic stem cells; future applications could potentially include in vitro gland formation or the use of induced pluripotent stem cell populations (iPSCs).
doi:10.3791/50327
PMCID: PMC3728755  PMID: 23852031
Embryonic Stem Cells (ESCs); Disease Models; Animal; Cell Differentiation; Urogenital System; [Prostate, Urogenital Sinus, Mesenchyme, Embryonic Stem Cells ]
25.  Protocols for Assessing Radiofrequency Interactions with Nanoparticles and Biological Systems for Non-Invasive Hyperthermia Cancer Therapy 
Cancer therapies which are less toxic and invasive than their existing counterparts are highly desirable. The use of RF electric-fields that penetrate deep into the body, causing minimal toxicity, are currently being studied as a viable means of non-invasive cancer therapy. It is envisioned that the interactions of RF energy with internalized nanoparticles (NPs) can liberate heat which can then cause overheating (hyperthermia) of the cell, ultimately ending in cell necrosis.
In the case of non-biological systems, we present detailed protocols relating to quantifying the heat liberated by highly-concentrated NP colloids. For biological systems, in the case of in vitro experiments, we describe the techniques and conditions which must be adhered to in order to effectively expose cancer cells to RF energy without bulk media heating artifacts significantly obscuring the data. Finally, we give a detailed methodology for in vivo mouse models with ectopic hepatic cancer tumors.
doi:10.3791/50480
PMCID: PMC3856762  PMID: 24022384
Radiofrequency; Cancer; Nanoparticles; Hyperthermia; Gold

Results 1-25 (1170)