Search tips
Search criteria

Results 1-25 (3321)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo 
Molecular Biology of the Cell  2014;25(24):3835-3850.
In addition to biochemical gradients and transcriptional networks, cell behavior is regulated by endogenous bioelectrical cues originating in the activity of ion channels and pumps, operating in a wide variety of cell types. Instructive signals mediated by changes in resting potential control proliferation, differentiation, cell shape, and apoptosis of stem, progenitor, and somatic cells. Of importance, however, cells are regulated not only by their own Vmem but also by the Vmem of their neighbors, forming networks via electrical synapses known as gap junctions. Spatiotemporal changes in Vmem distribution among nonneural somatic tissues regulate pattern formation and serve as signals that trigger limb regeneration, induce eye formation, set polarity of whole-body anatomical axes, and orchestrate craniofacial patterning. New tools for tracking and functionally altering Vmem gradients in vivo have identified novel roles for bioelectrical signaling and revealed the molecular pathways by which Vmem changes are transduced into cascades of downstream gene expression. Because channels and gap junctions are gated posttranslationally, bioelectrical networks have their own characteristic dynamics that do not reduce to molecular profiling of channel expression (although they couple functionally to transcriptional networks). The recent data provide an exciting opportunity to crack the bioelectric code, and learn to program cellular activity at the level of organs, not only cell types. The understanding of how patterning information is encoded in bioelectrical networks, which may require concepts from computational neuroscience, will have transformative implications for embryogenesis, regeneration, cancer, and synthetic bioengineering.
PMCID: PMC4244194  PMID: 25425556
2.  Minus end–directed motor KIFC3 suppresses E-cadherin degradation by recruiting USP47 to adherens junctions 
Molecular Biology of the Cell  2014;25(24):3851-3860.
KIFC3, a minus end–directed kinesin motor, recruits the ubiquitin-specific protease USP47, a protease that removes ubiquitin chains from substrates, to epithelial adherens junctions. This process suppresses the ubiquitination and resultant degradation of E-cadherin, thereby maintaining stable cell–cell adhesion in epithelial sheets.
The adherens junction (AJ) plays a crucial role in maintaining cell–cell adhesion in epithelial tissues. Previous studies show that KIFC3, a minus end–directed kinesin motor, moves into AJs via microtubules that grow from clusters of CAMSAP3 (also known as Nezha), a protein that binds microtubule minus ends. The function of junction-associated KIFC3, however, remains to be elucidated. Here we find that KIFC3 binds the ubiquitin-specific protease USP47, a protease that removes ubiquitin chains from substrates and hence inhibits proteasome-mediated proteolysis, and recruits it to AJs. Depletion of KIFC3 or USP47 promotes cleavage of E-cadherin at a juxtamembrane region of the cytoplasmic domain, resulting in the production of a 90-kDa fragment and the internalization of E-cadherin. This cleavage depends on the E3 ubiquitin protein ligase Hakai and is inhibited by proteasome inhibitors. E-cadherin ubiquitination consistently increases after depletion of KIFC3 or USP47. These findings suggest that KIFC3 suppresses the ubiquitination and resultant degradation of E-cadherin by recruiting USP47 to AJs, a process that may be involved in maintaining stable cell–cell adhesion in epithelial sheets.
PMCID: PMC4244195  PMID: 25253721
3.  Induction of focal adhesions and motility in Drosophila S2 cells 
Molecular Biology of the Cell  2014;25(24):3861-3869.
In this study, normally immotile S2 cells are engineered to induce the formation of focal adhesions and cell motility by the transfection of a single gene encoding an integrin subunit. It is demonstrated that the focal adhesions recruit expected components and exhibit mechanosensitive behavior on integrin-ligand substrates of different stiffnesses.
Focal adhesions are dynamic structures that interact with the extracellular matrix on the cell exterior and actin filaments on the cell interior, enabling cells to adhere and crawl along surfaces. We describe a system for inducing the formation of focal adhesions in normally non–ECM-adherent, nonmotile Drosophila S2 cells. These focal adhesions contain the expected molecular markers such as talin, vinculin, and p130Cas, and they require talin for their formation. The S2 cells with induced focal adhesions also display a nonpolarized form of motility on vitronectin-coated substrates. Consistent with findings in mammalian cells, the degree of motility can be tuned by changing the stiffness of the substrate and was increased after the depletion of PAK3, a p21-activated kinase. A subset of nonmotile, nonpolarized cells also exhibited focal adhesions that rapidly assembled and disassembled around the cell perimeter. Such cooperative and dynamic fluctuations of focal adhesions were decreased by RNA interference (RNAi) depletion of myosin II and focal adhesion kinase, suggesting that this behavior requires force and focal adhesion maturation. These results demonstrate that S2 cells, a cell line that is well studied for cytoskeletal dynamics and readily amenable to protein manipulation by RNAi, can be used to study the assembly and dynamics of focal adhesions and mechanosensitive cell motility.
PMCID: PMC4244196  PMID: 25273555
4.  The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity 
Molecular Biology of the Cell  2014;25(24):3870-3883.
The molecular machinery that catalyzes S-acylation reactions at the Golgi comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity. It is proposed that the coexistence of these two groups of enzymes in cells is important to allow the Golgi S-acylation machinery to modify a wide and diverse set of substrates.
S-acylation, the attachment of fatty acids onto cysteine residues, regulates protein trafficking and function and is mediated by a family of zDHHC enzymes. The S-acylation of peripheral membrane proteins has been proposed to occur at the Golgi, catalyzed by an S-acylation machinery that displays little substrate specificity. To advance understanding of how S-acylation of peripheral membrane proteins is handled by Golgi zDHHC enzymes, we investigated interactions between a subset of four Golgi zDHHC enzymes and two S-acylated proteins—synaptosomal-associated protein 25 (SNAP25) and cysteine-string protein (CSP). Our results uncover major differences in substrate recognition and S-acylation by these zDHHC enzymes. The ankyrin-repeat domains of zDHHC17 and zDHHC13 mediated strong and selective interactions with SNAP25/CSP, whereas binding of zDHHC3 and zDHHC7 to these proteins was barely detectable. Despite this, zDHHC3/zDHHC7 could S-acylate SNAP25/CSP more efficiently than zDHHC17, whereas zDHHC13 lacked S-acylation activity toward these proteins. Overall the results of this study support a model in which dynamic intracellular localization of peripheral membrane proteins is achieved by highly selective recruitment by a subset of zDHHC enzymes at the Golgi, combined with highly efficient S-acylation by other Golgi zDHHC enzymes.
PMCID: PMC4244197  PMID: 25253725
5.  Cytoskeletal confinement of CX3CL1 limits its susceptibility to proteolytic cleavage by ADAM10 
Molecular Biology of the Cell  2014;25(24):3884-3899.
CX3CL1 diffuses within confined regions of the plasma membrane. CX3CL1 is confined by the cortical actin cytoskeleton, not lipid rafts. Actin confinement regions protect CX3CL1 from proteolysis by limiting its interactions with ADAM10.
CX3CL1 is a unique chemokine that acts both as a transmembrane endothelial adhesion molecule and, upon proteolytic cleavage, a soluble chemoattractant for circulating leukocytes. The constitutive release of soluble CX3CL1 requires the interaction of its transmembrane species with the integral membrane metalloprotease ADAM10, yet the mechanisms governing this process remain elusive. Using single-particle tracking and subdiffraction imaging, we studied how ADAM10 interacts with CX3CL1. We observed that the majority of cell surface CX3CL1 diffused within restricted confinement regions structured by the cortical actin cytoskeleton. These confinement regions sequestered CX3CL1 from ADAM10, precluding their association. Disruption of the actin cytoskeleton reduced CX3CL1 confinement and increased CX3CL1–ADAM10 interactions, promoting the release of soluble chemokine. Our results demonstrate a novel role for the cytoskeleton in limiting membrane protein proteolysis, thereby regulating both cell surface levels and the release of soluble ligand.
PMCID: PMC4244198  PMID: 25253723
6.  csi2p modulates microtubule dynamics and organizes the bipolar spindle for chromosome segregation 
Molecular Biology of the Cell  2014;25(24):3900-3908.
A novel gene, csi2+ (chromosome segregation impaired 2), is reported. It localizes to the spindle pole body, and its deletion leads to a transient monopolar spindle and subsequent chromosome lagging. It is proposed that csi2p regulates mitotic microtubule length, defects in which may cause kinetochore–microtubule attachment problems.
Proper chromosome segregation is of paramount importance for proper genetic inheritance. Defects in chromosome segregation can lead to aneuploidy, which is a hallmark of cancer cells. Eukaryotic chromosome segregation is accomplished by the bipolar spindle. Additional mechanisms, such as the spindle assembly checkpoint and centromere positioning, further help to ensure complete segregation fidelity. Here we present the fission yeast csi2+. csi2p localizes to the spindle poles, where it regulates mitotic microtubule dynamics, bipolar spindle formation, and subsequent chromosome segregation. csi2 deletion (csi2Δ) results in abnormally long mitotic microtubules, high rate of transient monopolar spindles, and subsequent high rate of chromosome segregation defects. Because csi2Δ has multiple phenotypes, it enables estimates of the relative contribution of the different mechanisms to the overall chromosome segregation process. Centromere positioning, microtubule dynamics, and bipolar spindle formation can all contribute to chromosome segregation. However, the major determinant of chromosome segregation defects in fission yeast may be microtubule dynamic defects.
PMCID: PMC4244199  PMID: 25253718
7.  Loss of the Sec1/Munc18-family proteins VPS-33.2 and VPS-33.1 bypasses a block in endosome maturation in Caenorhabditis elegans 
Molecular Biology of the Cell  2014;25(24):3909-3925.
Evidence is presented for the existence of HOPS and CORVET tethering complexes in metazoans. A role is shown for the SM protein components of tethers in controlling the flux of material through the endosomal system.
The end of the life of a transport vesicle requires a complex series of tethering, docking, and fusion events. Tethering complexes play a crucial role in the recognition of membrane entities and bringing them into close opposition, thereby coordinating and controlling cellular trafficking events. Here we provide a comprehensive RNA interference analysis of the CORVET and HOPS tethering complexes in metazoans. Knockdown of CORVET components promoted RAB-7 recruitment to subapical membranes, whereas in HOPS knockdowns, RAB-5 was found also on membrane structures close to the cell center, indicating the RAB conversion might be impaired in the absence of these tethering complexes. Unlike in yeast, metazoans have two VPS33 homologues, which are Sec1/Munc18 (SM)-family proteins involved in the regulation of membrane fusion. We assume that in wild type, each tethering complex contains a specific SM protein but that they may be able to substitute for each other in case of absence of the other. Of importance, knockdown of both SM proteins allowed bypass of the endosome maturation block in sand-1 mutants. We propose a model in which the SM proteins in tethering complexes are required for coordinated flux of material through the endosomal system.
PMCID: PMC4244200  PMID: 25273556
8.  Acute increase of α-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation 
Molecular Biology of the Cell  2014;25(24):3926-3941.
This is the first study to show the direct effects of α-synuclein on synaptic vesicle trafficking and to elucidate the underlying structural mechanisms. Acutely increasing α-synuclein severely inhibits synaptic vesicle recycling from the plasma membrane. The endocytic defects require a properly folded N-terminal α-helical domain of α-synuclein.
Parkinson's disease is associated with multiplication of the α-synuclein gene and abnormal accumulation of the protein. In animal models, α-synuclein overexpression broadly impairs synaptic vesicle trafficking. However, the exact steps of the vesicle trafficking pathway affected by excess α-synuclein and the underlying molecular mechanisms remain unknown. Therefore we acutely increased synuclein levels at a vertebrate synapse and performed a detailed ultrastructural analysis of the effects on presynaptic membranes. At stimulated synapses (20 Hz), excess synuclein caused a loss of synaptic vesicles and an expansion of the plasma membrane, indicating an impairment of vesicle recycling. The N-terminal domain (NTD) of synuclein, which folds into an α-helix, was sufficient to reproduce these effects. In contrast, α-synuclein mutants with a disrupted N-terminal α-helix (T6K and A30P) had little effect under identical conditions. Further supporting this model, another α-synuclein mutant (A53T) with a properly folded NTD phenocopied the synaptic vesicle recycling defects observed with wild type. Interestingly, the vesicle recycling defects were not observed when the stimulation frequency was reduced (5 Hz). Thus excess α-synuclein impairs synaptic vesicle recycling evoked during intense stimulation via a mechanism that requires a properly folded N-terminal α-helix.
PMCID: PMC4244201  PMID: 25273557
9.  Membrane tethering by the atlastin GTPase depends on GTP hydrolysis but not on forming the cross-over configuration 
Molecular Biology of the Cell  2014;25(24):3942-3953.
The atlastin GTPase couples nucleotide hydrolysis to formation of a trans cross-over dimer to catalyze homotypic endoplasmic reticulum membrane fusion. Assays that separate tethering from fusion reveal that stable trans contact for tethering depends on GTP hydrolysis. In contrast, cross-over formation is required only for the fusion step.
The membrane-anchored atlastin GTPase couples nucleotide hydrolysis to the catalysis of homotypic membrane fusion to form a branched endoplasmic reticulum network. Trans dimerization between atlastins anchored in opposing membranes, accompanied by a cross-over conformational change, is thought to draw the membranes together for fusion. Previous studies on the conformational coupling of atlastin to its GTP hydrolysis cycle have been carried out largely on atlastins lacking a membrane anchor. Consequently, whether fusion involves a discrete tethering step and, if so, the potential role of GTP hydrolysis and cross-over in tethering remain unknown. In this study, we used membrane-anchored atlastins in assays that separate tethering from fusion to dissect the requirements for each. We found that tethering depended on GTP hydrolysis, but, unlike fusion, it did not depend on cross-over. Thus GTP hydrolysis initiates stable head-domain contact in trans to tether opposing membranes, whereas cross-over formation plays a more pivotal role in powering the lipid rearrangements for fusion.
PMCID: PMC4244202  PMID: 25253720
10.  Lanthionine synthetase C–like protein 2 (LanCL2) is a novel regulator of Akt 
Molecular Biology of the Cell  2014;25(24):3954-3961.
Lanthionine synthetase C-like 2 (LanCL2) is a novel regulator of Akt, promoting maximum Akt activation and cell survival in liver cells. LanCL2 regulates Akt activation by directly facilitating mTORC2 phosphorylation of Akt.
The serine/threonine protein kinase Akt controls a wide range of biochemical and cellular processes under the modulation of a variety of regulators. In this study, we identify the lanthionine synthetase C–like 2 (LanCL2) protein as a positive regulator of Akt activation in human liver cells. LanCL2 knockdown dampens serum- and insulin-stimulated Akt phosphorylation, whereas LanCL2 overexpression enhances these processes. Neither insulin receptor phosphorylation nor the interaction between insulin receptor substrate and phosphatidylinositide 3-kinase (PI3K) is affected by LanCL2 knockdown. LanCL2 also does not function through PP2A, a phosphatase of Akt. Instead, LanCL2 directly interacts with Akt, with a preference for inactive Akt. Moreover, we show that LanCL2 also binds to the Akt kinase mTORC2, but not phosphoinositide-dependent kinase 1. Whereas LanCL2 is not required for the Akt-mTORC2 interaction, recombinant LanCL2 enhances Akt phosphorylation by target of rapamycin complex 2 (mTORC2) in vitro. Finally, consistent with a function of Akt in regulating cell survival, LanCL2 knockdown increases the rate of apoptosis, which is reversed by the expression of a constitutively active Akt. Taken together, our findings reveal LanCL2 as a novel regulator of Akt and suggest that LanCL2 facilitates optimal phosphorylation of Akt by mTORC2 via direct physical interactions with both the kinase and the substrate.
PMCID: PMC4244203  PMID: 25273559
11.  TOR complex 2–Ypk1 signaling regulates actin polarization via reactive oxygen species 
Molecular Biology of the Cell  2014;25(24):3962-3972.
TORC2/Ypk1 signaling regulates actin polarization by controlling levels of ROS. Pkc1, an established regulator of actin, acts downstream of Ypk1 to prevent ROS. TORC2/Ypk1-dependent regulation of Pkc1 requires proper localization of the GEF Rom2, which in turn is dependent on the phospholipid flippase kinase Fpk1 and complex sphingolipids.
The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells.
PMCID: PMC4244204  PMID: 25253719
12.  Predicting interactome network perturbations in human cancer: application to gene fusions in acute lymphoblastic leukemia 
Molecular Biology of the Cell  2014;25(24):3973-3985.
Genomic variations such as gene fusions are directly or indirectly associated with human diseases. A method is presented combining gene expression and interactome data analyses to identify specific targets in leukemia. The Myc network and the mRNA export machinery are perturbed in ETV6-RUNX1 and TCF3-PBX1 subtypes of leukemia.
Genomic variations such as point mutations and gene fusions are directly or indirectly associated with human diseases. They are recognized as diagnostic, prognostic markers and therapeutic targets. However, predicting the functional effect of these genetic alterations beyond affected genes and their products is challenging because diseased phenotypes are likely dependent of complex molecular interaction networks. Using as models three different chromosomal translocations—ETV6-RUNX1 (TEL-AML1), BCR-ABL1, and TCF3-PBX1 (E2A-PBX1)—frequently found in precursor-B-cell acute lymphoblastic leukemia (preB-ALL), we develop an approach to extract perturbed molecular interactions from gene expression changes. We show that the MYC and JunD transcriptional circuits are specifically deregulated after ETV6-RUNX1 and TCF3-PBX1 gene fusions, respectively. We also identified the bulk mRNA NXF1-dependent machinery as a direct target for the TCF3-PBX1 fusion protein. Through a novel approach combining gene expression and interactome data analysis, we provide new insight into TCF3-PBX1 and ETV6-RUNX1 acute lymphoblastic leukemia.
PMCID: PMC4244205  PMID: 25273558
13.  The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc–dependent mechanism 
Molecular Biology of the Cell  2014;25(23):3765-3778.
The expression pattern of Staufen1 during mouse skeletal muscle development is described. Sustained expression of Staufen1 in myoblasts prevents normal differentiation by causing decreases in the expression of key myogenic markers by an SMD-independent mechanism and by promoting the translational regulation of c-myc.
Recent work has shown that Staufen1 plays key roles in skeletal muscle, yet little is known about its pattern of expression during embryonic and postnatal development. Here we first show that Staufen1 levels are abundant in mouse embryonic muscles and that its expression decreases thereafter, reaching low levels in mature muscles. A similar pattern of expression is seen as cultured myoblasts differentiate into myotubes. Muscle degeneration/regeneration experiments revealed that Staufen1 increases after cardiotoxin injection before returning to the low levels seen in mature muscles. We next prevented the decrease in Staufen1 during differentiation by generating stable C2C12 muscle cell lines overexpressing Staufen1. Cells overexpressing Staufen1 differentiated poorly, as evidenced by reductions in the differentiation and fusion indices and decreases in MyoD, myogenin, MEF2A, and MEF2C, independently of Staufen-mediated mRNA decay. However, levels of c-myc, a factor known to inhibit differentiation, were increased in C2C12 cells overexpressing Staufen1 through enhanced translation. By contrast, the knockdown of Staufen1 decreased c-myc levels in myoblasts. Collectively our results show that Staufen1 is highly expressed during early stages of differentiation/development and that it can impair differentiation by regulating c-myc, thereby highlighting the multifunctional role of Staufen1 in skeletal muscle cells.
PMCID: PMC4230783  PMID: 25208565
14.  Force is a signal that cells cannot ignore 
Molecular Biology of the Cell  2014;25(23):3717-3725.
Cells sense biochemical, electrical, and mechanical cues in their environment that affect their differentiation and behavior. Unlike biochemical and electrical signals, mechanical signals can propagate without the diffusion of proteins or ions; instead, forces are transmitted through mechanically stiff structures, flowing, for example, through cytoskeletal elements such as microtubules or filamentous actin. The molecular details underlying how cells respond to force are only beginning to be understood. Here we review tools for probing force-sensitive proteins and highlight several examples in which forces are transmitted, routed, and sensed by proteins in cells. We suggest that local unfolding and tension-dependent removal of autoinhibitory domains are common features in force-sensitive proteins and that force-sensitive proteins may be commonplace wherever forces are transmitted between and within cells. Because mechanical forces are inherent in the cellular environment, force is a signal that cells must take advantage of to maintain homeostasis and carry out their functions.
PMCID: PMC4230779  PMID: 25394814
15.  Cbx2 stably associates with mitotic chromosomes via a PRC2- or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes 
Molecular Biology of the Cell  2014;25(23):3726-3739.
Cbx2 is immobilized at mitotic chromosomes, and the immobilization is independent of PRC1 or PRC2. Cbx2 plays important roles in recruiting PRC1 complex to mitotic chromosomes. This study provides novel insights into the PcG epigenetic memory passing down through cell divisions.
Polycomb group (PcG) proteins are epigenetic transcriptional factors that repress key developmental regulators and maintain cellular identity through mitosis via a poorly understood mechanism. Using quantitative live-cell imaging in mouse ES cells and tumor cells, we demonstrate that, although Polycomb repressive complex (PRC) 1 proteins (Cbx-family proteins, Ring1b, Mel18, and Phc1) exhibit variable capacities of association with mitotic chromosomes, Cbx2 overwhelmingly binds to mitotic chromosomes. The recruitment of Cbx2 to mitotic chromosomes is independent of PRC1 or PRC2, and Cbx2 is needed to recruit PRC1 complex to mitotic chromosomes. Quantitative fluorescence recovery after photobleaching analysis indicates that PRC1 proteins rapidly exchange at interphasic chromatin. On entry into mitosis, Cbx2, Ring1b, Mel18, and Phc1 proteins become immobilized at mitotic chromosomes, whereas other Cbx-family proteins dynamically bind to mitotic chromosomes. Depletion of PRC1 or PRC2 protein has no effect on the immobilization of Cbx2 on mitotic chromosomes. We find that the N-terminus of Cbx2 is needed for its recruitment to mitotic chromosomes, whereas the C-terminus is required for its immobilization. Thus these results provide fundamental insights into the molecular mechanisms of epigenetic inheritance.
PMCID: PMC4230780  PMID: 25232004
16.  Inhibition of ESCRT-II–CHMP6 interactions impedes cytokinetic abscission and leads to cell death 
Molecular Biology of the Cell  2014;25(23):3740-3748.
Mammalian cell abscission was recently shown to be driven by the ESCRT machinery, but the mechanism has not been fully resolved. This work identifies the ESCRT components ESCRT-II and CHMP6 as essential components of ESCRT-mediated abscission and introduces a new approach for inhibition of abscission using the first 52 amino acids of CHMP6.
Recently the ESCRT-III filamentous complex was designated as the driving force for mammalian cell abscission, that is, fission of the intercellular membrane bridge connecting daughter cells at the end of cytokinesis. However, how ESCRT-III is activated to set on abscission has not been resolved. Here we revisit the role of the upstream canonical ESCRT players ESCRT-II and CHMP6 in abscission. Using high-resolution imaging, we show that these proteins form highly ordered structures at the intercellular bridge during abscission progression. Furthermore, we demonstrate that a truncated version of CHMP6, composed of its first 52 amino acids (CHMP6-N), arrives at the intercellular bridge, blocks abscission, and subsequently leads to cell death. This phenotype is abolished in a mutated version of CHMP6-N designed to prevent CHMP6-N binding to its ESCRT-II partner. Of interest, deleting the first 10 amino acids from CHMP6-N does not interfere with its arrival at the intercellular bridge but almost completely abolishes the abscission failure phenotype. Taken together, these data suggest an active role for ESCRT-II and CHMP6 in ESCRT-mediated abscission. Our work advances the mechanistic understanding of ESCRT-mediated membrane fission in cells and introduces an easily applicable tool for upstream inhibition of the ESCRT pathway in live mammalian cells.
PMCID: PMC4230781  PMID: 25232011
17.  Plakophilin 3 mediates Rap1-dependent desmosome assembly and adherens junction maturation 
Molecular Biology of the Cell  2014;25(23):3749-3764.
Desmosomal Armadillo family member Pkp3 is established as a coordinator of desmosome and adherens junction assembly and maturation through its physical and functional association with Rap1. It thus functions in a manner distinct from the closely related Pkp2.
The pathways driving desmosome and adherens junction assembly are temporally and spatially coordinated, but how they are functionally coupled is poorly understood. Here we show that the Armadillo protein plakophilin 3 (Pkp3) mediates both desmosome assembly and E-cadherin maturation through Rap1 GTPase, thus functioning in a manner distinct from the closely related plakophilin 2 (Pkp2). Whereas Pkp2 and Pkp3 share the ability to mediate the initial phase of desmoplakin (DP) accumulation at sites of cell–cell contact, they play distinct roles in later steps: Pkp3 is required for assembly of a cytoplasmic population of DP-enriched junction precursors, whereas Pkp2 is required for transfer of the precursors to the membrane. Moreover, Pkp3 forms a complex with Rap1 GTPase, promoting its activation and facilitating desmosome assembly. We show further that Pkp3 deficiency causes disruption of an E-cadherin/Rap1 complex required for adherens junction sealing. These findings reveal Pkp3 as a coordinator of desmosome and adherens junction assembly and maturation through its functional association with Rap1.
PMCID: PMC4230782  PMID: 25208567
18.  TBC1D9B functions as a GTPase-activating protein for Rab11a in polarized MDCK cells 
Molecular Biology of the Cell  2014;25(23):3779-3797.
Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the GEFs and GAPs that regulate its GTP-GDP cycle. TBC1D9B is identified as a Rab11a GAP in MDCK cells, where it regulates the Rab11a-dependent basolateral-to-apical transcytotic pathway.
Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the guanine nucleotide-exchange factors and GTPase-activating proteins (GAPs) that regulate its GTP-GDP cycle. We observed that in the presence of Mg2+ (2.5 mM), TBC1D9B interacted via its Tre2-Bub2-Cdc16 (TBC) domain with Rab11a, Rab11b, and Rab4a in a nucleotide-dependent manner. However, only Rab11a was a substrate for TBC1D9B-stimulated GTP hydrolysis. At limiting Mg2+ concentrations (<0.5 mM), Rab8a was an additional substrate for this GAP. In polarized Madin–Darby canine kidney cells, endogenous TBC1D9B colocalized with Rab11a-positive recycling endosomes but less so with EEA1-positive early endosomes, transferrin-positive recycling endosomes, or late endosomes. Overexpression of TBC1D9B, but not an inactive mutant, decreased the rate of basolateral-to-apical IgA transcytosis—a Rab11a-dependent pathway—and shRNA-mediated depletion of TBC1D9B increased the rate of this process. In contrast, TBC1D9B had no effect on two Rab11a-independent pathways—basolateral recycling of the transferrin receptor or degradation of the epidermal growth factor receptor. Finally, expression of TBC1D9B decreased the amount of active Rab11a in the cell and concomitantly disrupted the interaction between Rab11a and its effector, Sec15A. We conclude that TBC1D9B is a Rab11a GAP that regulates basolateral-to-apical transcytosis in polarized MDCK cells.
PMCID: PMC4230784  PMID: 25232007
19.  A1 adenosine receptor–stimulated exocytosis in bladder umbrella cells requires phosphorylation of ADAM17 Ser-811 and EGF receptor transactivation 
Molecular Biology of the Cell  2014;25(23):3798-3812.
The role of phosphorylation in ADAM17-dependent shedding is controversial. We show that the A1 adenosine receptor stimulates exocytosis in umbrella cells by a pathway that requires phosphorylation of ADAM17–Ser-811, followed by HB-EGF shedding and EGF receptor transactivation. Preventing ADAM17 phosphorylation blocks these downstream events.
Despite the importance of ADAM17-dependent cleavage in normal biology and disease, the physiological cues that trigger its activity, the effector pathways that promote its function, and the mechanisms that control its activity, particularly the role of phosphorylation, remain unresolved. Using native bladder epithelium, in some cases transduced with adenoviruses encoding small interfering RNA, we observe that stimulation of apically localized A1 adenosine receptors (A1ARs) triggers a Gi-Gβγ-phospholipase C-protein kinase C (PKC) cascade that promotes ADAM17-dependent HB-EGF cleavage, EGFR transactivation, and apical exocytosis. We further show that the cytoplasmic tail of rat ADAM17 contains a conserved serine residue at position 811, which resides in a canonical PKC phosphorylation site, and is phosphorylated in response to A1AR activation. Preventing this phosphorylation event by expression of a nonphosphorylatable ADAM17S811A mutant or expression of a tail-minus construct inhibits A1AR-stimulated, ADAM17-dependent HB-EGF cleavage. Furthermore, expression of ADAM17S811A in bladder tissues impairs A1AR-induced apical exocytosis. We conclude that adenosine-stimulated exocytosis requires PKC- and ADAM17-dependent EGFR transactivation and that the function of ADAM17 in this pathway depends on the phosphorylation state of Ser-811 in its cytoplasmic domain.
PMCID: PMC4230785  PMID: 25232008
20.  The role of Sec3p in secretory vesicle targeting and exocyst complex assembly 
Molecular Biology of the Cell  2014;25(23):3813-3822.
The exocyst has been speculated to mediate the tethering of secretory vesicles to the plasma membrane. However, there has been no direct experimental evidence for this notion. An ectopic targeting strategy is used to provide experimental support for this model and investigate the regulators of exocyst assembly and vesicle targeting.
During membrane trafficking, vesicular carriers are transported and tethered to their cognate acceptor compartments before soluble N-ethylmaleimide–sensitive factor attachment protein (SNARE)-mediated membrane fusion. The exocyst complex was believed to target and tether post-Golgi secretory vesicles to the plasma membrane during exocytosis. However, no definitive experimental evidence is available to support this notion. We developed an ectopic targeting assay in yeast in which each of the eight exocyst subunits was expressed on the surface of mitochondria. We find that most of the exocyst subunits were able to recruit the other members of the complex there, and mistargeting of the exocyst led to secretion defects in cells. On the other hand, only the ectopically located Sec3p subunit is capable of recruiting secretory vesicles to mitochondria. Our assay also suggests that both cytosolic diffusion and cytoskeleton-based transport mediate the recruitment of exocyst subunits and secretory vesicles during exocytosis. In addition, the Rab GTPase Sec4p and its guanine nucleotide exchange factor Sec2p regulate the assembly of the exocyst complex. Our study helps to establish the role of the exocyst subunits in tethering and allows the investigation of the mechanisms that regulate vesicle tethering during exocytosis.
PMCID: PMC4230786  PMID: 25232005
21.  Latency of transcription factor Stp1 depends on a modular regulatory motif that functions as cytoplasmic retention determinant and nuclear degron 
Molecular Biology of the Cell  2014;25(23):3823-3833.
The latent properties of Stp1—the effector transcription factor of the SPS signaling pathway in yeast—depend on the RI motif in the N-terminal regulatory domain and three inner nuclear membrane proteins, Asi1, Asi2, and Asi3. RI functions in a modular and transferable manner as a cytoplasmic retention determinant and an Asi-dependent degron.
The Ssy1-Ptr3-Ssy5 (SPS)–sensing pathway enables yeast to respond to extracellular amino acids. Stp1, the effector transcription factor, is synthesized as a latent cytoplasmic precursor with an N-terminal regulatory domain that restricts its nuclear accumulation. The negative regulatory mechanisms impinging on the N-terminal domain are poorly understood. However, Stp1 latency depends on three inner nuclear membrane proteins, Asi1, Asi2, and Asi3. We report that the N-terminal domain of Stp1 contains a small motif, designated RI, that fully accounts for latency. RI is modular, mediates interactions with the plasma membrane, and can retain histone Htb2 in the cytoplasm. A novel class of STP1 mutations affecting RI were isolated that are less efficiently retained in the cytoplasm but remain under tight negative control by the Asi proteins. Intriguingly, these mutant proteins exhibit enhanced stability in strains lacking ASI1. Our results indicate that RI mediates latency by two distinct activities: it functions as a cytoplasmic retention determinant and an Asi-dependent degron. These findings provide novel insights into the SPS-sensing pathway and demonstrate for the first time that the inner nuclear membrane Asi proteins function in a degradation pathway in the nucleus.
PMCID: PMC4230787  PMID: 25253722
23.  Quantitative cell biology: the essential role of theory 
Molecular Biology of the Cell  2014;25(22):3438-3440.
Quantitative biology is a hot area, as evidenced by the recent establishment of institutes, graduate programs, and conferences with that name. But what is quantitative biology? What should it be? And how can it contribute to solving the big questions in biology? The past decade has seen very rapid development of quantitative experimental techniques, especially at the single-molecule and single-cell levels. In this essay, I argue that quantitative biology is much more than just the quantitation of these experimental results. Instead, it should be the application of the scientific method by which measurement is directed toward testing theories. In this view, quantitative biology is the recognition that theory and models play critical roles in biology, as they do in physics and engineering. By tying together experiment and theory, quantitative biology promises a deeper understanding of underlying mechanisms, when the theory works, or to new discoveries, when it does not.
PMCID: PMC4230598  PMID: 25368416
24.  Beware the tail that wags the dog: informal and formal models in biology 
Molecular Biology of the Cell  2014;25(22):3441-3444.
Informal models have always been used in biology to guide thinking and devise experiments. In recent years, formal mathematical models have also been widely introduced. It is sometimes suggested that formal models are inherently superior to informal ones and that biology should develop along the lines of physics or economics by replacing the latter with the former. Here I suggest to the contrary that progress in biology requires a better integration of the formal with the informal.
PMCID: PMC4230599  PMID: 25368417
25.  Modularity and predictability in cell signaling and decision making 
Molecular Biology of the Cell  2014;25(22):3445-3450.
Cells make decisions to differentiate, divide, or apoptose based on multiple signals of internal and external origin. These decisions are discrete outputs from dynamic networks comprised of signaling pathways. Yet the validity of this decomposition of regulatory proteins into distinct pathways is unclear because many regulatory proteins are pleiotropic and interact through cross-talk with components of other pathways. In addition to the deterministic complexity of interconnected networks, there is stochastic complexity arising from the fluctuations in concentrations of regulatory molecules. Even within a genetically identical population of cells grown in the same environment, cell-to-cell variations in mRNA and protein concentrations can be as high as 50% in yeast and even higher in mammalian cells. Thus, if everything is connected and stochastic, what hope could we have for a quantitative understanding of cellular decisions? Here we discuss the implications of recent advances in genomics, single-cell, and single-cell genomics technology for network modularity and cellular decisions. On the basis of these recent advances, we argue that most gene expression stochasticity and pathway interconnectivity is nonfunctional and that cellular decisions are likely much more predictable than previously expected.
PMCID: PMC4230600  PMID: 25368418

Results 1-25 (3321)