PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (207)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Three-Dimensional Microfluidic Collagen Hydrogels for Investigating Flow-Mediated Tumor-Endothelial Signaling and Vascular Organization 
Hyperpermeable tumor vessels are responsible for elevated interstitial fluid pressure and altered flow patterns within the tumor microenvironment. These aberrant hydrodynamic stresses may enhance tumor development by stimulating the angiogenic activity of endothelial cells lining the tumor vasculature. However, it is currently not known to what extent shear forces affect endothelial organization or paracrine signaling during tumor angiogenesis. The objective of this study was to develop a three-dimensional (3D), in vitro microfluidic tumor vascular model for coculture of tumor and endothelial cells under varying flow shear stress conditions. A central microchannel embedded within a collagen hydrogel functions as a single neovessel through which tumor-relevant hydrodynamic stresses are introduced and quantified using microparticle image velocimetry (μ-PIV). This is the first use of μ-PIV in a tumor representative, 3D collagen matrix comprised of cylindrical microchannels, rather than planar geometries, to experimentally measure flow velocity and shear stress. Results demonstrate that endothelial cells develop a confluent endothelium on the microchannel lumen that maintains integrity under physiological flow shear stresses. Furthermore, this system provides downstream molecular analysis capability, as demonstrated by quantitative RT-PCR, in which, tumor cells significantly increase expression of proangiogenic genes in response to coculture with endothelial cells under low flow conditions. This work demonstrates that the microfluidic in vitro cell culture model can withstand a range of physiological flow rates and permit quantitative measurement of wall shear stress at the fluid–collagen interface using μ-PIV optical flow diagnostics, ultimately serving as a versatile platform for elucidating the role of fluid forces on tumor–endothelial cross talk.
doi:10.1089/ten.tec.2012.0731
PMCID: PMC3870485  PMID: 23730946
2.  Hormonal Regulation of Epithelial Organization in a Three-Dimensional Breast Tissue Culture Model 
The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.
doi:10.1089/ten.tec.2013.0054
PMCID: PMC3870574  PMID: 23675751
3.  A Comparison of Self-Assembly and Hydrogel Encapsulation as a Means to Engineer Functional Cartilaginous Grafts Using Culture Expanded Chondrocytes 
Despite an increased interest in the use of hydrogel encapsulation and cellular self-assembly (often termed “self-aggregating” or “scaffold-free” approaches) for tissue-engineering applications, to the best of our knowledge, no study to date has been undertaken to directly compare both approaches for generating functional cartilaginous grafts. The objective of this study was to directly compare self-assembly (SA) and agarose hydrogel encapsulation (AE) as a means to engineer such grafts using passaged chondrocytes. Agarose hydrogels (5 mm diameter × 1.5 mm thick) were seeded with chondrocytes at two cell seeding densities (900,000 cells or 4 million cells in total per hydrogel), while SA constructs were generated by adding the same number of cells to custom-made molds. Constructs were either supplemented with transforming growth factor (TGF)-β3 for 6 weeks, or only supplemented with TGF-β3 for the first 2 weeks of the 6 week culture period. The SA method was only capable of generating geometrically uniform cartilaginous tissues at high seeding densities (4 million cells). At these high seeding densities, we observed that total sulphated glycosaminoglycan (sGAG) and collagen synthesis was greater with AE than SA, with higher sGAG retention also observed in AE constructs. When normalized to wet weight, however, SA constructs exhibited significantly higher levels of collagen accumulation compared with agarose hydrogels. Furthermore, it was possible to engineer such functionality into these tissues in a shorter timeframe using the SA approach compared with AE. Therefore, while large numbers of chondrocytes are required to engineer cartilaginous grafts using the SA approach, it would appear to lead to the faster generation of a more hyaline-like tissue, with a tissue architecture and a ratio of collagen to sGAG content more closely resembling native articular cartilage.
doi:10.1089/ten.tec.2013.0118
PMCID: PMC3870578  PMID: 23672760
4.  Murine Muscle Engineered from Dermal Precursors: An In Vitro Model for Skeletal Muscle Generation, Degeneration, and Fatty Infiltration 
Skeletal muscle can be engineered by converting dermal precursors into muscle progenitors and differentiated myocytes. However, the efficiency of muscle development remains relatively low and it is currently unclear if this is due to poor characterization of the myogenic precursors, the protocols used for cell differentiation, or a combination of both. In this study, we characterized myogenic precursors present in murine dermospheres, and evaluated mature myotubes grown in a novel three-dimensional culture system. After 5–7 days of differentiation, we observed isolated, twitching myotubes followed by spontaneous contractions of the entire tissue-engineered muscle construct on an extracellular matrix (ECM). In vitro engineered myofibers expressed canonical muscle markers and exhibited a skeletal (not cardiac) muscle ultrastructure, with numerous striations and the presence of aligned, enlarged mitochondria, intertwined with sarcoplasmic reticula (SR). Engineered myofibers exhibited Na+- and Ca2+-dependent inward currents upon acetylcholine (ACh) stimulation and tetrodotoxin-sensitive spontaneous action potentials. Moreover, ACh, nicotine, and caffeine elicited cytosolic Ca2+ transients; fiber contractions coupled to these Ca2+ transients suggest that Ca2+ entry is activating calcium-induced calcium release from the SR. Blockade by d-tubocurarine of ACh-elicited inward currents and Ca2+ transients suggests nicotinic receptor involvement. Interestingly, after 1 month, engineered muscle constructs showed progressive degradation of the myofibers concomitant with fatty infiltration, paralleling the natural course of muscular degeneration. We conclude that mature myofibers may be differentiated on the ECM from myogenic precursor cells present in murine dermospheres, in an in vitro system that mimics some characteristics found in aging and muscular degeneration.
doi:10.1089/ten.tec.2013.0146
PMCID: PMC3870606  PMID: 23631552
5.  Optimum Parameters for Freeze-Drying Decellularized Arterial Scaffolds 
Tissue Engineering. Part C, Methods  2013;19(12):981-990.
Decellularized arterial scaffolds have achieved success in advancing toward clinical use as vascular grafts. However, concerns remain regarding long-term preservation and sterilization of these scaffolds. Freeze drying offers a means of overcoming these concerns. In this study, we investigated the effects of various freeze-drying protocols on decellularized porcine carotid arteries and consequently, determined the optimum parameters to fabricate a stable, preserved scaffold with unaltered mechanical properties. Freeze drying by constant slow cooling to two final temperatures ((Tf), −10°C and −40°C) versus instant freezing was investigated by histological examination and mechanical testing. Slow cooling to Tf= −10°C produced a stiffer and less distensible response than the non freeze-dried scaffolds and resulted in disruption to the collagen fibers. The mechanical response of Tf= −40°C scaffolds demonstrated disruption to the elastin network, which was confirmed with histology. Snap freezing scaffolds in liquid nitrogen and freeze drying to Tf= −40°C with a precooled shelf at −60°C produced scaffolds with unaltered mechanical properties and a histology resembling non-freeze-dried scaffolds. The results of this study demonstrate the importance of optimizing the nucleation and ice crystal growth/size to ensure homogenous drying, preventing extracellular matrix disruption and subsequent inferior mechanical properties. This new manufacturing protocol creates the means for the preservation and sterilization of decellularized arterial scaffolds while simultaneously maintaining the mechanical properties of the tissue.
doi:10.1089/ten.tec.2012.0741
PMCID: PMC3833302  PMID: 23614758
6.  Fabrication of Electrospun Poly(L-Lactide-co-ɛ-Caprolactone)/Collagen Nanoyarn Network as a Novel, Three-Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering 
Tissue Engineering. Part C, Methods  2013;19(12):925-936.
Tissue engineering techniques using novel scaffolding materials offer potential alternatives for managing tendon disorders. An ideal tendon tissue engineered scaffold should mimic the three-dimensional (3D) structure of the natural extracellular matrix (ECM) of the native tendon. Here, we propose a novel electrospun nanoyarn network that is morphologically and structurally similar to the ECM of native tendon tissues. The nanoyarn, random nanofiber, and aligned nanofiber scaffolds of a synthetic biodegradable polymer, poly(l-lactide-co-ɛ-caprolactone) [P(LLA-CL)], and natural collagen I complex were fabricated using electrospinning. These scaffolds were characterized in terms of fiber morphology, pore size, porosity, and chemical and mechanical properties for the purpose of culturing tendon cells (TCs) for tendon tissue engineering. The results indicated a fiber diameter of 632±81 nm for the random nanofiber scaffold, 643±97 nm for the aligned nanofiber scaffold, and 641±68 nm for the nanoyarn scaffold. The yarn in the nanoyarn scaffold was twisted by many nanofibers similar to the structure and inherent nanoscale organization of tendons, indicating an increase in the diameter of 9.51±3.62 μm. The nanoyarn scaffold also contained 3D aligned microstructures with large interconnected pores and high porosity. Fourier transform infrared analyses revealed the presence of collagen in the three scaffolds. The mechanical properties of the sample scaffolds indicated that the scaffolds had desirable mechanical properties for tissue regeneration. Further, the results revealed that TC proliferation and infiltration, and the expression of tendon-related ECM genes, were significantly enhanced on the nanoyarn scaffold compared with that on the random nanofiber and aligned nanofiber scaffolds. This study demonstrates that electrospun P(LLA-CL)/collagen nanoyarn is a novel, 3D, macroporous, aligned scaffold that has potential application in tendon tissue engineering.
doi:10.1089/ten.tec.2012.0328
PMCID: PMC3833310  PMID: 23557537
7.  Use of Collagen Gel as an Alternative Extracellular Matrix for the In Vitro and In Vivo Growth of Murine Small Intestinal Epithelium 
Tissue Engineering. Part C, Methods  2013;19(12):961-969.
Methods for the in vitro culture of primary small intestinal epithelium have improved greatly in recent years. A critical barrier for the translation of this methodology to the patient's bedside is the ability to grow intestinal stem cells using a well-defined extracellular matrix. Current methods rely on the use of Matrigel™, a proprietary basement membrane-enriched extracellular matrix gel produced in mice that is not approved for clinical use. We demonstrate for the first time the capacity to support the long-term in vitro growth of murine intestinal epithelium in monoculture, using type I collagen. We further demonstrate successful in vivo engraftment of enteroids co-cultured with intestinal subepithelial myofibroblasts in collagen gel. Small intestinal crypts were isolated from 6 to 10 week old transgenic enhanced green fluorescent protein (eGFP+) mice and suspended within either Matrigel or collagen gel; cultures were supported using previously reported media and growth factors. After 1 week, cultures were either lysed for DNA or RNA extraction or were implanted subcutaneously in syngeneic host mice. Quantitative real-time polymerase chain reaction (qPCR) was performed to determine expansion of the transgenic eGFP-DNA and to determine the mRNA gene expression profile. Immunohistochemistry was performed on in vitro cultures and recovered in vivo explants. Small intestinal crypts reliably expanded to form enteroids in either Matrigel or collagen in both mono- and co-cultures as confirmed by microscopy and eGFP-DNA qPCR quantification. Collagen-based cultures yielded a distinct morphology with smooth enteroids and epithelial monolayer growth at the gel surface; both enteroid and monolayer cells demonstrated reactivity to Cdx2, E-cadherin, CD10, Periodic Acid-Schiff, and lysozyme. Collagen-based enteroids were successfully subcultured in vitro, whereas pure monolayer epithelial sheets did not survive passaging. Reverse transcriptase-polymerase chain reaction demonstrated evidence of Cdx2, villin 1, mucin 2, chromogranin A, lysozyme 1, and Lgr5 expression, suggesting a fully elaborated intestinal epithelium. Additionally, collagen-based enteroids co-cultured with myofibroblasts were successfully recovered after 5 weeks of in vivo implantation, with a preserved immunophenotype. These results indicate that collagen-based techniques have the capacity to eliminate the need for Matrigel in intestinal stem cell culture. This is a critical step towards producing neo-mucosa using good manufacturing practices for clinical applications in the future.
doi:10.1089/ten.tec.2012.0710
PMCID: PMC3833386  PMID: 23566043
8.  Efficient Generation of Functional Epithelial and Epidermal Cells from Human Pluripotent Stem Cells Under Defined Conditions 
Tissue Engineering. Part C, Methods  2013;19(12):949-960.
Human pluripotent stem cells (hPSCs) have an unparalleled potential to generate limitless quantities of any somatic cell type. However, current methods for producing populations of various somatic cell types from hPSCs are generally not standardized and typically incorporate undefined cell culture components often resulting in variable differentiation efficiencies and poor reproducibility. To address this, we have developed a defined approach for generating epithelial progenitor and epidermal cells from hPSCs. In doing so, we have identified an optimal starting cell density to maximize yield and maintain high purity of K18+/p63+ simple epithelial progenitors. In addition, we have shown that the use of synthetic, defined substrates in lieu of Matrigel and gelatin can successfully facilitate efficient epithelial differentiation, maintaining a high (>75%) purity of K14+/p63+ keratinocyte progenitor cells and at a two to threefold higher yield than a previously reported undefined differentiation method. These K14+/p63+ cells also exhibited a higher expansion potential compared to cells generated using an undefined differentiation protocol and were able to terminally differentiate and recapitulate an epidermal tissue architecture in vitro. In summary, we have demonstrated the production of populations of functional epithelial and epidermal cells from multiple hPSC lines using a new, completely defined differentiation strategy.
doi:10.1089/ten.tec.2013.0011
PMCID: PMC3833387  PMID: 23560510
9.  Growing Bone Tissue-Engineered Niches with Graded Osteogenicity: An In Vitro Method for Biomimetic Construct Assembly 
Tissue Engineering. Part C, Methods  2013;19(12):911-924.
The traditional bone tissue-engineering approach exploits mesenchymal stem cells (MSCs) to be seeded once only on three-dimensional (3D) scaffolds, hence, differentiated for a certain period of time and resulting in a homogeneous osteoblast population at the endpoint. However, after achieving terminal osteodifferentiation, cell viability is usually markedly compromised. On the other hand, naturally occurring osteogenesis results from the coexistence of MSC progenies at distinct differentiative stages in the same microenvironment. This diversification also enables long-term viability of the mature tissue. We report an easy and tunable in vitro method to engineer simple osteogenic cell niches in a biomimetic fashion. The niches were grown via periodic reseeding of undifferentiated MSCs on MSC/scaffold constructs, the latter undergoing osteogenic commitment. Time-fractioning of the seeded cell number during differentiation time of the constructs allowed graded osteogenic cell populations to be grown together on the same scaffolds (i.e., not only terminally differentiated osteoblasts). In such cell-dynamic systems, the overall differentiative stage of the constructs could also be tuned by varying the cell density seeded at each inoculation. In this way, we generated two different biomimetic niche models able to host good reservoirs of preosteoblasts and other osteoprogenitors after 21 culture days. At that time, the niche type resulting in 40.8% of immature osteogenic progenies and only 59.2% of mature osteoblasts showed a calcium content comparable to the constructs obtained with the traditional culture method (i.e., 100.03±29.30 vs. 78.51±28.50 pg/cell, respectively; p=not significant), the latter colonized only by fully differentiated osteoblasts showing exhausted viability. This assembly method for tissue-engineered constructs enabled a set of important parameters, such as viability, colonization, and osteogenic yield of the MSCs to be balanced on 3D scaffolds, thus achieving biomimetic in vitro models with graded osteogenicity, which are more complex and reliable than those currently used by tissue engineers.
doi:10.1089/ten.tec.2012.0445
PMCID: PMC3833389  PMID: 23537352
10.  A Novel Native Derived Coronary Artery Tissue-Flap Model 
Tissue Engineering. Part C, Methods  2013;19(12):970-980.
Although tissue-engineering approaches have led to significant progress in the quest of finding a viable substitute for dysfunctional myocardium, the vascularization of such bioartificial constructs still remains a major challenge. Hence, there is a need for model systems that allow us to study and better understand cardiac and vascular biology to overcome current limitations. Therefore, in this study, in toto decellularized rat hearts with a patent vessel system were processed into standardized coronary artery tissue flaps adherent to the ascending aorta. Protein diffusivity analysis and blood perfusion of the coronary arteries showed proper sealing of the de-endothelialized vessels. Retrograde aortic perfusion allowed for selective seeding of the coronary artery system, while surface seeding of the tissue flaps allowed for additional controlled coculture with cardiac cells. The coronary artery tissue-flap model offers a patent and perfusable coronary vascular architecture with a preserved cardiac extracellular matrix, therefore mimicking nature's input to the highest possible degree. This offers the possibility to study re-endothelialization and endothelial function of different donor cell types and their interaction with cardiac cells in a standardized biologically derived cardiac in vitro model, while establishing a platform that could be used for in vitro drug testing and stem cell differentiation studies.
doi:10.1089/ten.tec.2012.0712
PMCID: PMC3833390  PMID: 23631507
11.  Techniques for the Isolation of High-Quality RNA from Cells Encapsulated in Chitosan Hydrogels 
Tissue Engineering. Part C, Methods  2013;19(11):829-838.
Extracting high-quality RNA from hydrogels containing polysaccharide components is challenging, as traditional RNA isolation techniques designed for cells and tissues can have limited yields and purity due to physiochemical interactions between the nucleic acids and the biomaterials. In this study, a comparative analysis of several different RNA isolation methods was performed on human adipose-derived stem cells photo-encapsulated within methacrylated glycol chitosan hydrogels. The results demonstrated that RNA isolation methods with cetyl trimethylammonium bromide (CTAB) buffer followed by purification with an RNeasy® mini kit resulted in low yields of RNA, except when the samples were preminced directly within the buffer. In addition, genomic DNA contamination during reverse transcriptase–polymerase chain reaction (RT-PCR) analysis was observed in the hydrogels processed with the CTAB-based methods. Isolation methods using TRIzol® in combination with one of a Qiaex® gel extraction kit, an RNeasy® mini kit, or an extended solvent purification method extracted RNA suitable for gene amplification, with no evidence of genomic contamination. The latter two methods yielded the best results in terms of yield and amplification efficiency. Predigestion of the scaffolds with lysozyme was investigated as a possible means of enhancing RNA extraction from the polysaccharide gels, with no improvements observed in terms of the purity, yield, or amplification efficiency. Overall, this work highlights the application of a TRIzol®+extended solvent purification method for optimizing RNA extraction that can be applied to obtain reliable and accurate gene expression data in studies investigating cells seeded in chitosan-based scaffolds.
doi:10.1089/ten.tec.2012.0693
PMCID: PMC3793649  PMID: 23448167
12.  Designing a Multicellular Organotypic 3D Liver Model with a Detachable, Nanoscale Polymeric Space of Disse 
Tissue Engineering. Part C, Methods  2013;19(11):875-884.
The design of in vitro models that mimic the stratified multicellular hepatic microenvironment continues to be challenging. Although several in vitro hepatic cultures have been shown to exhibit liver functions, their physiological relevance is limited due to significant deviation from in vivo cellular composition. We report the assembly of a novel three-dimensional (3D) organotypic liver model incorporating three different cell types (hepatocytes, liver sinusoidal endothelial cells, and Kupffer cells) and a polymeric interface that mimics the Space of Disse. The nanoscale interface is detachable, optically transparent, derived from self-assembled polyelectrolyte multilayers, and exhibits a Young's modulus similar to in vivo values for liver tissue. Only the 3D liver models simultaneously maintain hepatic phenotype and elicit proliferation, while achieving cellular ratios found in vivo. The nanoscale detachable polymeric interfaces can be modulated to mimic basement membranes that exhibit a wide range of physical properties. This facile approach offers a versatile new avenue in the assembly of engineered tissues. These results demonstrate the ability of the tri-cellular 3D cultures to serve as an organotypic hepatic model that elicits proliferation and maintenance of phenotype and in vivo-like cellular ratios.
doi:10.1089/ten.tec.2012.0700
PMCID: PMC3793659  PMID: 23556413
13.  In Vitro Angiogenesis Induced by Tumor-Endothelial Cell Co-Culture in Bilayered, Collagen I Hydrogel Bioengineered Tumors 
Tissue Engineering. Part C, Methods  2013;19(11):864-874.
Although successful remission has been achieved when cancer is diagnosed and treated during its earliest stages of development, a tumor that has established neovascularization poses a significantly greater risk of mortality. The inability to recapitulate the complexities of a maturing in vivo tumor microenvironment in an in vitro setting has frustrated attempts to identify and test anti-angiogenesis therapies that are effective at permanently halting cancer progression. We have established an in vitro tumor angiogenesis model driven solely by paracrine signaling between MDA-MB-231 breast cancer cells and telomerase-immortalized human microvascular endothelial (TIME) cells co-cultured in a spatially relevant manner. The bilayered bioengineered tumor model consists of TIME cells cultured as an endothelium on the surface of an acellular collagen I hydrogel under which MDA-MB-231 cells are cultured in a separate collagen I hydrogel. Results showed that TIME cells co-cultured with the MDA-MB-231 cells demonstrated a significant increase in cell number, rapidly developed an elongated morphology, and invasively sprouted into the underlying acellular collagen I layer. Comparatively, bioengineered tumors cultured with less aggressive MCF7 breast cancer cells did not elicit an angiogenic response. Angiogenic sprouting was demonstrated by the formation of a complex capillary-like tubule network beneath the surface of a confluent endothelial monolayer with lumen formation and anastomosing branches. In vitro angiogenesis was dependent on vascular endothelial growth factor secretion, matrix concentration, and duration of co-culture. Basic fibroblast growth factor supplemented to the co-cultures augmented angiogenic sprouting. The development of improved preclinical tumor angiogenesis models, such as the one presented here, is critical for accurate evaluation and refinement of anti-angiogenesis therapies.
doi:10.1089/ten.tec.2012.0684
PMCID: PMC3793662  PMID: 23516987
14.  Visualizing Osteogenesis In Vivo Within a Cell–Scaffold Construct for Bone Tissue Engineering Using Two-Photon Microscopy 
Tissue Engineering. Part C, Methods  2013;19(11):839-849.
Tissue-engineering therapies have shown early success in the clinic, however, the cell–biomaterial interactions that result in successful outcomes are not yet well understood and are difficult to observe. Here we describe a method for visualizing bone formation within a tissue-engineered construct in vivo, at a single-cell resolution, and in situ in three dimensions using two-photon microscopy. First, two-photon microscopy and histological perspectives were spatially linked using fluorescent reporters for cells in the skeletal lineage. In the process, the tissue microenvironment that precedes a repair-focused study was described. The distribution and organization of type I collagen in the calvarial microenvironment was also described using its second harmonic signal. Second, this platform was used to observe in vivo, for the first time, host cells, donor cells, scaffold, and new bone formation within cell-seeded constructs in a bone defect. We examined constructs during bone repair 4 and 6 weeks after implantation. New bone formed on scaffolds, primarily by donor cells. Host cells formed a new periosteal layer that covered the implant. Scaffold resorption appeared to be site specific, where areas near the top were removed and deeper areas were completely embedded in new mineral. Visualizing the in vivo progression of the cell and scaffold microenvironment will contribute to our understanding of tissue-engineered regeneration and should lead to the development of more streamlined and therapeutically powerful approaches.
doi:10.1089/ten.tec.2012.0490
PMCID: PMC3793663  PMID: 23641794
15.  Sustainable Three-Dimensional Tissue Model of Human Adipose Tissue 
Tissue Engineering. Part C, Methods  2013;19(10):745-754.
The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.
doi:10.1089/ten.tec.2012.0620
PMCID: PMC3751318  PMID: 23373822
16.  Differentiation of Human Embryonic Stem Cells Using Size-Controlled Embryoid Bodies and Negative Cell Selection in the Production of Photoreceptor Precursor Cells 
Tissue Engineering. Part C, Methods  2013;19(10):755-764.
We proposed to optimize the retinal differentiation protocols for human embryonic stem cells (hESCs) by improving cell handling. To improve efficiency, we first focused on the production of just one retinal precursor cell type (photoreceptor precursor cells [PPCs]) rather than the production of a range of retinal cells. Combining information from a number of previous studies, in particular the use of a feeder-free culture medium and taurine plus triiodothyronine supplements, we then assessed the values of using size-controlled embryoid bodies (EBs) and negative cell selection (to remove residual embryonic antigen-4-positive hESCs). Using size-controlled 1000 cell EBs, significant improvements were made, in that 78% CRX+ve PPCs could be produced in just 17 days. This could be increased to 93% PPCs through the added step of negative cell selection. Improved efficiency of PPC production will help in efforts to undertake shorter and larger preclinical studies as a prelude to future clinical trials.
doi:10.1089/ten.tec.2012.0524
PMCID: PMC3751206  PMID: 23363370
17.  An Improved Cryosection Method for Polyethylene Glycol Hydrogels Used in Tissue Engineering 
Tissue Engineering. Part C, Methods  2013;19(10):794-801.
The high water content of hydrogels allows these materials to closely mimic the native biological extracellular conditions, but it also makes difficult the histological preparation of hydrogel-based bioengineered tissue. Paraffin-embedding techniques require dehydration of hydrogels, resulting in substantial collapse and deformation, whereas cryosectioning is hampered by the formation of ice crystals within the hydrogel material. Here, we sought to develop a method to obtain good-quality cryosections for the microscopic evaluation of hydrogel-based tissue-engineered constructs, using polyethylene glycol (PEG) as a test hydrogel. Conventional sucrose solutions, which dehydrate cells while leaving extracellular water in place, produce a hydrogel block that is brittle and difficult to section. We therefore replaced sucrose with multiple protein-based and nonprotein-based solutions as cryoprotectants. Our analysis demonstrated that overnight incubation in bovine serum albumin (BSA), fetal bovine serum (FBS), polyvinyl alcohol (PVA), optimum cutting temperature (OCT®) compound, and Fisher HistoPrep frozen tissue-embedding media work well to improve the cryosectioning of hydrogels. The protein-based solutions give background staining with routine hematoxylin and eosin, but the use of nonprotein-based solutions PVA and OCT reduces this background by 50%. These methods preserve the tissue architecture and cellular details with both in vitro PEG constructs and in constructs that have been implanted in vivo. This simple hydrogel cryosectioning technique improves the methodology for creation of good-quality histological sections from hydrogels in multiple applications.
doi:10.1089/ten.tec.2012.0460
PMCID: PMC3751207  PMID: 23448137
18.  Microfluidic Enrichment of Mouse Epidermal Stem Cells and Validation of Stem Cell Proliferation In Vitro 
Tissue Engineering. Part C, Methods  2013;19(10):765-773.
Bulge stem cells reside in the lowest permanent portion of hair follicles and are responsible for the renewal of these follicles along with the repair of the epidermis during wound healing. These cells are identified by surface expression of CD34 and the α6-integrin. When CD34 and α6 double-positive cells are isolated and implanted into murine skin, they give rise to epidermis and hair follicle structures. The current gold standard for isolation of these stem cells is fluorescence-activated cell sorting (FACS) based on cell surface markers. Here, we describe an alternative method for CD34 bulge stem cell isolation: a microfluidic platform that captures stem cells based on cell surface markers. This method is relatively fast, requiring 30 min of time from direct introduction of murine skin tissue digestate into a two-stage microfluidic device to one-pass elution of CD34+ enriched cells with a purity of 55.8%±5.1%. The recovered cells remain viable and formed colonies with characteristic morphologies. When grown in culture, enriched cells contain a larger α6+ population than un-enriched cells.
doi:10.1089/ten.tec.2012.0638
PMCID: PMC3751333  PMID: 23394261
19.  Cell-Laden Poly(ɛ-caprolactone)/Alginate Hybrid Scaffolds Fabricated by an Aerosol Cross-Linking Process for Obtaining Homogeneous Cell Distribution: Fabrication, Seeding Efficiency, and Cell Proliferation and Distribution 
Tissue Engineering. Part C, Methods  2013;19(10):784-793.
Generally, solid-freeform fabricated scaffolds show a controllable pore structure (pore size, porosity, pore connectivity, and permeability) and mechanical properties by using computer-aided techniques. Although the scaffolds can provide repeated and appropriate pore structures for tissue regeneration, they have a low biological activity, such as low cell-seeding efficiency and nonuniform cell density in the scaffold interior after a long culture period, due to a large pore size and completely open pores. Here we fabricated three different poly(ɛ-caprolactone) (PCL)/alginate scaffolds: (1) a rapid prototyped porous PCL scaffold coated with an alginate, (2) the same PCL scaffold coated with a mixture of alginate and cells, and (3) a multidispensed hybrid PCL/alginate scaffold embedded with cell-laden alginate struts. The three scaffolds had similar micropore structures (pore size=430–580 μm, porosity=62%–68%, square pore shape). Preosteoblast cells (MC3T3-E1) were used at the same cell density in each scaffold. By measuring cell-seeding efficiency, cell viability, and cell distribution after various periods of culturing, we sought to determine which scaffold was more appropriate for homogeneously regenerated tissues.
doi:10.1089/ten.tec.2012.0651
PMCID: PMC3751369  PMID: 23469894
20.  Optical Imaging Predicts Mechanical Properties During Decellularization of Cardiac Tissue 
Tissue Engineering. Part C, Methods  2013;19(10):802-809.
Decellularization of xenogeneic hearts offers an acellular, naturally occurring, 3D scaffold that may aid in the development of an engineered human heart tissue. However, decellularization impacts the structural and mechanical properties of the extracellular matrix (ECM), which can strongly influence a cell response during recellularization. We hypothesized that multiphoton microscopy (MPM), combined with image correlation spectroscopy (ICS), could be used to characterize the structural and mechanical properties of the decellularized cardiac matrix in a noninvasive and nondestructive fashion. Whole porcine hearts were decellularized for 7 days by four different solutions of Trypsin and/or Triton. The compressive modulus of the cardiac ECM decreased to <20% of that of the native tissue in three of the four conditions (range 2–8 kPa); the modulus increased by ∼150% (range 125–150 kPa) in tissues treated with Triton only. The collagen and elastin content decreased steadily over time for all four decellularization conditions. The ICS amplitude of second harmonic generation (SHG, ASHG) collagen images increased in three of the four decellularization conditions characterized by a decrease in fiber density; the ICS amplitude was approximately constant in tissues treated with Triton only. The ICS ratio (RSHG, skew) of collagen images increased significantly in the two conditions characterized by a loss of collagen crimping or undulations. The ICS ratio of two-photon fluorescence (TPF, RTPF) elastin images decreased in three of the four conditions, but increased significantly in Triton-only treated tissue characterized by retention of densely packed elastin fibers. There were strong linear relationships between both the log of ASHG (R2=0.86) and RTPF (R2=0.92) with the compressive modulus. Using these variables, a linear model predicts the compressive modulus: E=73.9×Log(ASHG)+70.1×RTPF − 131 (R2=0.94). This suggests that the collagen content and elastin alignment determine the mechanical properties of the ECM. We conclude that MPM and ICS analysis is a noninvasive, nondestructive method to predict the mechanical properties of the decellularized cardiac ECM.
doi:10.1089/ten.tec.2012.0720
PMCID: PMC3751370  PMID: 23469868
21.  Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology 
Tissue Engineering. Part C, Methods  2013;19(10):810-819.
Electrospinning is a popular technique to fabricate tissue engineering scaffolds due to the exceptional tunability of fiber morphology that can be used to control scaffold mechanical properties, degradation rate, and cell behavior. Although the effects of modulating processing or solution parameters on fiber morphology have been extensively studied, there remains limited understanding of the impact of environmental parameters such as humidity. To address this gap, three polymers (poly(ethylene glycol) [PEG], polycaprolactone [PCL], and poly(carbonate urethane) [PCU]) were electrospun at a range of relative humidities (RH=5%–75%) and the resulting fiber architecture characterized with scanning electron microscopy. Low relative humidity (<50%) resulted in fiber breakage for all three polymers due to decreased electrostatic discharge from the jet. At high relative humidity (>50%), three distinct effects were observed based on individual polymer properties. An increase in fiber breakage and loss of fiber morphology occurred in the PEG system as a result of increased water absorption at high relative humidity. In contrast, surface pores on PCL fibers were observed and hypothesized to have formed via vapor-induced phase separation. Finally, decreased PCU fiber collection occurred at high humidity likely due to increased electrostatic discharge. These findings highlight that the effects of relative humidity on electrospun fiber morphology are dependent on polymer hydrophobicity, solvent miscibility with water, and solvent volatility. An additional study was conducted to highlight that small changes in molecular weight can strongly influence solution viscosity and resulting fiber morphology. We propose that solution viscosity rather than concentration is a more useful parameter to report in electrospinning methodology to enable reproduction of findings. In summary, this study further elucidates key mechanisms in electrospun fiber formation that can be utilized to fabricate tissue engineering scaffolds with tunable and reproducible properties.
doi:10.1089/ten.tec.2012.0671
PMCID: PMC3751372  PMID: 23469941
22.  Noninvasive Real-Time Monitoring by AlamarBlue® During In Vitro Culture of Three-Dimensional Tissue-Engineered Bone Constructs 
Bone tissue engineering (TE) aims to develop reproducible and predictive three-dimensional (3D) TE constructs, defined as cell-seeded scaffolds produced by a controlled in vitro process, to heal or replace damaged and nonfunctional bone. To control and assure the quality of the bone TE constructs, a prerequisite for regulatory authorization, there is a need to develop noninvasive analysis techniques to evaluate TE constructs and to monitor their behavior in real time during in vitro culturing. Most analysis techniques, however, are limited to destructive end-point analyses. This study investigates the use of the nontoxic alamarBlue® (AB) reagent, which is an indicator for metabolic cell activity, for monitoring the cellularity of 3D TE constructs in vitro as part of a bioreactor culturing processes. Within the field of TE, bioreactors have a huge potential in the translation of TE concepts to the clinic. Hence, the use of the AB reagent was evaluated not only in static cultures, but also in dynamic cultures in a perfusion bioreactor setup. Hereto, the AB assay was successfully integrated in the bioreactor-driven TE construct culture process in a noninvasive way. The obtained results indicate a linear correlation between the overall metabolic activity and the total DNA content of a scaffold upon seeding as well as during the initial stages of cell proliferation. This makes the AB reagent a powerful tool to follow-up bone TE constructs in real-time during static as well as dynamic 3D cultures. Hence, the AB reagent can be successfully used to monitor and predict cell confluence in a growing 3D TE construct.
doi:10.1089/ten.tec.2012.0601
PMCID: PMC3719443  PMID: 23327780
23.  Capillary Force Seeding of Sphere-Templated Hydrogels for Tissue-Engineered Prostate Cancer Xenografts 
Biomaterial-based tissue-engineered tumor models are now widely used in cancer biology studies. However, specific methods for efficient and reliable cell seeding into these and tissue-engineering constructs used for regenerative medicine often remain poorly defined. Here, we describe a capillary force-based method for seeding the human prostate cancer cell lines M12 and LNCaP C4-2 into sphere-templated poly(2-hydroxyethyl methacrylate) hydrogels. The capillary force seeding method improved the cell number and distribution within the porous scaffolds compared to well-established protocols such as static and centrifugation seeding. Seeding efficiency was found to be strongly dependent on the rounded cell diameter relative to the pore diameter and pore interconnect size, parameters that can be controllably modulated during scaffold fabrication. Cell seeding efficiency was evaluated quantitatively using a PicoGreen DNA assay, which demonstrated some variation in cell retention using the capillary force method. When cultured within the porous hydrogels, both cell lines attached and proliferated within the network, but histology showed the formation of a necrotic zone by 7 days likely due to oxygen and nutrient diffusional limitations. The necrotic zone thickness was decreased by dynamically culturing cells in an orbital shaker. Proliferation analysis showed that despite a variable seeding efficiency, by 7 days in culture, scaffolds contained a roughly consistent number of cells as they proliferated to fill the pores of the scaffold. These studies demonstrate that sphere-templated polymeric scaffolds have the potential to serve as an adaptable cell culture substrate for engineering a three-dimensional prostate cancer model.
doi:10.1089/ten.tec.2012.0388
PMCID: PMC3719465  PMID: 23373788
24.  In Vitro Perfused Human Capillary Networks 
Replicating in vitro the complex in vivo tissue microenvironment has the potential to transform our approach to medicine and also our understanding of biology. In order to accurately model the 3D arrangement and interaction of cells and extracellular matrix, new microphysiological systems must include a vascular supply. The vasculature not only provides the necessary convective transport of oxygen, nutrients, and waste in 3D culture, but also couples and integrates the responses of organ systems. Here we combine tissue engineering and microfluidic technology to create an in vitro 3D metabolically active stroma (∼1 mm3) that, for the first time, contains a perfused, living, dynamic, interconnected human capillary network. The range of flow rate (μm/s) and shear rate (s−1) within the network was 0–4000 and 0–1000, respectively, and thus included the normal physiological range. Infusion of FITC dextran demonstrated microvessels (15–50 μm) to be largely impermeable to 70 kDa. Our high-throughput biology-directed platform has the potential to impact a broad range of fields that intersect with the microcirculation, including tumor metastasis, drug discovery, vascular disease, and environmental chemical toxicity.
doi:10.1089/ten.tec.2012.0430
PMCID: PMC3719485  PMID: 23320912
25.  1-Step Versus 2-Step Immobilization of Alkaline Phosphatase and Bone Morphogenetic Protein-2 onto Implant Surfaces Using Polydopamine 
Immobilization of biomolecules onto implant surfaces is highly relevant in many areas of biomaterial research. Recently, a 2-step immobilization procedure was developed for the facile conjugation of biomolecules onto various surfaces using self-polymerization of dopamine into polydopamine. In the current study, a 1-step polydopamine-based approach was applied for alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2) immobilization, and compared to the conventional 2-step polydopamine-based immobilization and plain adsorption. To this end, ALP and BMP-2 were immobilized onto titanium and polytetrafluoroethylene (PTFE) substrates. The absolute quantity and biological activity of immobilized ALP were assessed quantitatively to compare the three types of immobilization. Plain adsorption of both ALP and BMP-2 was inferior to both polydopamine-based immobilization approaches. ALP was successfully immobilized onto titanium and PTFE surfaces via the 1-step approach, and the immobilized ALP retained its enzymatic activity. Using the 1-step approach, the amount of immobilized ALP was increased twofold to threefold compared to the conventional 2-step immobilization process. In contrast, more BMP-2 was immobilized using the conventional 2-step immobilization approach. Retention of ALP and BMP-2 was measured over a period of 4 weeks and was found to be similar for the 1-step and 2-step methods and far superior to the retention of adsorbed biomolecules due to the formation of covalent linkages between catechol moieties and immobilized proteins. The biological behavior of ALP and BMP-2 coatings immobilized using polydopamine (1- and 2-step) as well as adsorption was assessed by culturing rat bone marrow cells, which revealed that the cell responses to the various experimental groups were not statistically different. In conclusion, the 1-step polydopamine-based immobilization method was shown to be more efficient for immobilization of ALP, whereas the conventional 2-step method was shown to be more efficient for attachment of BMP-2 onto implant surfaces.
doi:10.1089/ten.tec.2012.0313
PMCID: PMC3689932  PMID: 23231507

Results 1-25 (207)