PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (161)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Need for Speed in Rodent Locomotion Analyses 
Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed.
doi:10.1002/ar.22955
PMCID: PMC4758221  PMID: 24890845
mice; mouse; rodent; gait; locomotion; CatWalk; speed; velocity
2.  Biomechanical implications of intraspecific shape variation in chimpanzee crania: moving towards an integration of geometric morphometrics and finite element analysis 
In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P3 and M2. Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only their magnitude.
doi:10.1002/ar.23074
PMCID: PMC4274755  PMID: 25529239
Pan troglodytes; shape; force; stress; strain
3.  The Feeding Biomechanics and Dietary Ecology of Paranthropus boisei 
The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus.
doi:10.1002/ar.23073
PMCID: PMC4420635  PMID: 25529240
geometric morphometries; functional morphology; feeding biomechanics
4.  Anatomy and Ontogeny of a Novel Hemodynamic Organ in Zebrafish 
The zebrafish maxillary barbel can protract and retract in response to stimuli, and appears connected to a prominent blood sinus on the lateral aspect of the maxillary bone. However, the mechanism of barbel movement is not described. Using whole-mount phalloidin staining of the sinus region, we observed long filamentous actin cables, suggesting highly organized vascular smooth muscle cells, surrounding an endothelial chamber. Although the chamber is variably filled by erythrocytes in vivo, cardiac injection of fluorescent dextrans shows that it consistently contains plasma. Full-thickness confocal imaging of dextran-injected adults containing EGFP+ endothelial cells revealed a vascular complex with three compartments, here named the distal bulb, central chamber, and accessory chamber. The early ontogeny of all three compartments was confirmed in a whole-mount series of Tg(fli1a:EGFP) juveniles. In wild type adults, the fine structure of each chamber was studied using paraffin- and plastic-section histochemistry and transmission electron microscopy. The distal bulb and central chamber have smooth muscle coats with luminally-elongated septa, forming semi-detached blood-filled lacunae. The central chamber walls and septa are extensively innervated by small, unmyelinated axons, as confirmed by immunohistochemical detection of acetylated tubulin, a component of axonal cytoplasm. The accessory chamber appears neither innervated nor muscularized, but is an endothelial cul-de-sac with a thickened elastic adventitia, suggesting an extensible fluid reservoir. We propose that we have identified a new organ in zebrafish, the maxillary barbel blood sinus, whose neurovascular specializations may contribute to zebrafish sensory biology and appendage control.
doi:10.1002/ar.23002
PMCID: PMC4236270  PMID: 25125342
blood; biomechanics; endothelium; nerve; vasculature; vibrissae
5.  Computational Fluid Dynamics (CFD) as surgical planning tool: a pilot study on middle turbinate resection 
Controversies exist regarding the resection or preservation of the middle turbinate (MT) during functional endoscopic sinus surgery (FESS). Any MT resection will perturb nasal airflow and may affect the mucociliary dynamics of the osteomeatal complex. Neither rhinometry nor computed tomography (CT) can adequately quantify nasal airflow pattern changes following surgery. This study explores the feasibility of assessing changes in nasal airflow dynamics following partial MT resection using computational fluid dynamics (CFD) techniques. We retrospectively converted the pre- and post-operative CT scans of a patient who underwent isolated partial MT concha bullosa resection into anatomically accurate three-dimensional numerical nasal models. Pre- and post-surgery nasal airflow simulations showed that the partial MT resection resulted in a shift of regional airflow towards the area of MT removal with a resultant decreased airflow velocity, decreased wall shear stress and increased local air pressure. However, the resection did not strongly affect the overall nasal airflow patterns, flow distributions in other areas of the nose, or the odorant uptake rate to the olfactory cleft mucosa. Morever, CFD predicted the patient's failure to perceive an improvement in his unilateral nasal obstruction following surgery. Accordingly, CFD techniques can be used to predict changes in nasal airflow dynamics following partial MT resection. However, the functional implications of this analysis await further clinical studies. Nevertheless, such techniques may potentially provide a quantitative evaluation of surgical effectiveness and may prove useful in preoperatively modeling the effects of surgical interventions.
doi:10.1002/ar.23033
PMCID: PMC4435687  PMID: 25312372
Rhinosinusitis; nasal obstruction; computational fluid dynamics; 3-D model; functional endoscopic surgery; concha bullosa
6.  Molecular and Cellular Mechanisms of Ectodomain Shedding 
The extracellular domain of several membrane-anchored proteins is released from the cell surface as soluble proteins through a regulated proteolytic mechanism called ectodomain shedding. Cells use ectodomain shedding to actively regulate the expression and function of surface molecules, and modulate a wide variety of cellular and physiological processes. Ectodomain shedding rapidly converts membrane-associated proteins into soluble effectors and, at the same time, rapidly reduces the level of cell surface expression. For some proteins, ectodomain shedding is also a prerequisite for intramembrane proteolysis, which liberates the cytoplasmic domain of the affected molecule and associated signaling factors to regulate transcription. Ectodomain shedding is a process that is highly regulated by specific agonists, antagonists, and intracellular signaling pathways. Moreover, only about 2% of cell surface proteins are released from the surface by ectodomain shedding, indicating that cells selectively shed their protein ectodomains. This review will describe the molecular and cellular mechanisms of ectodomain shedding, and discuss its major functions in lung development and disease.
doi:10.1002/ar.20757
PMCID: PMC4621804  PMID: 20503387
ectodomain shedding; lung injury; inflammation; infection; host defense
7.  Intracortical remodeling parameters are associated with measures of bone robustness 
Prior work identified a novel association between bone robustness and porosity, which may be part of a broader interaction whereby the skeletal system compensates for the natural variation in robustness (bone width relative to length) by modulating tissue-level mechanical properties to increase stiffness of slender bones and to reduce mass of robust bones. To further understand this association, we tested the hypothesis that the relationship between robustness and porosity is mediated through intracortical, BMU-based (basic multicellular unit) remodeling. We quantified cortical porosity, mineralization, and histomorphometry at two sites (38 and 66% of the length) in human cadaveric tibiae. We found significant correlations between robustness and several histomorphometric variables (e.g., % secondary tissue [R2 = 0.68, p < 0.004], total osteon area [R2=0.42, p<0.04]) at the 66% site. Although these associations were weaker at the 38% site, significant correlations between histological variables were identified between the two sites indicating that both respond to the same global effects and demonstrate a similar character at the whole bone level. Thus, robust bones tended to have larger and more numerous osteons with less infilling, resulting in bigger pores and more secondary bone area. These results suggest that local regulation of BMU-based remodeling may be further modulated by a global signal associated with robustness, such that remodeling is suppressed in slender bones but not in robust bones. Elucidating this mechanism further is crucial for better understanding the complex adaptive nature of the skeleton, and how inter-individual variation in remodeling differentially impacts skeletal aging and an individuals’ potential response to prophylactic treatments.
doi:10.1002/ar.22962
PMCID: PMC4167223  PMID: 24962664
8.  Laminar and neurochemical organization of the dorsal cochlear nucleus of the human, monkey, cat, and rodents 
The dorsal cochlear nucleus (DCN) is a brainstem structure that receives input from the auditory nerve. Many studies in a diversity of species have shown that the DCN has a laminar organization and identifiable neuron types with predictable synaptic relations to each other. In contrast, studies on the human DCN have found a less distinct laminar organization and fewer cell types, although there has been disagreement among studies in how to characterize laminar organization and which of the cell types identified in other animals are also present in humans. We have reexamined DCN organization in the human using immunohistochemistry to analyze the expression of several proteins that have been useful in delineating the neurochemical organization of other brainstem structures in humans: nonphosphorylated neurofilament protein (NPNFP), nitric oxide synthase (nNOS), and three calcium-binding proteins. The results for humans suggest a laminar organization with only two layers, and the presence of large projection neurons that are enriched in NPNFP. We did not observe evidence in humans of the inhibitory interneurons that have been described in the cat and rodent DCN. To compare humans and other animals directly we used immunohistochemistry to examine the DCN in the macaque monkey, the cat, and three rodents. We found similarities between macaque monkey and human in the expression of NPNFP and nNOS, and unexpected differences among species in the patterns of expression of the calcium-binding proteins.
doi:10.1002/ar.23000
PMCID: PMC4170232  PMID: 25132345
9.  Cell biology of sarcomeric protein engineering: Disease modeling and therapeutic potential 
The cardiac sarcomere is the functional unit for myocyte contraction. Ordered arrays of sarcomeric proteins held in stoichiometric balance with each other, respond to calcium to coordinate contraction and relaxation of the heart. Altered sarcomeric structure-function underlies the primary basis of disease in multiple acquired and inherited heart disease states. Hypertrophic and restrictive cardiomyopathies are caused by inherited mutations in sarcomeric genes and result in altered contractility. Ischemia mediated acidosis directly alters sarcomere function resulting in decreased contractility. In this review, we highlight the use of acute genetic engineering of adult cardiac myocytes through stoichiometric replacement of sarcomeric proteins in these disease states with particular focus on cardiac troponin I. Stoichiometric replacement of disease causing mutations has been instrumental in defining the molecular mechanisms of hypertrophic and restrictive cardiomyopathy in a cellular context. In addition, taking advantage of stoichiometric replacement through gene therapy is discussed, highlighting the ischemia-resistant histidine-button, A164H cTnI. Stoichiometric replacement of sarcomeric proteins offers a potential gene therapy avenue to replace mutant proteins, alter sarcomeric responses to pathophysiologic insults or neutralize altered sarcomeric function in disease.
doi:10.1002/ar.22966
PMCID: PMC4133785  PMID: 25125179
acute genetic engineering; myofilament; troponin; calcium sensitivity; sarcomere; molecular dynamics; adult cardiac myocytes
10.  Getting Folded: Chaperone proteins in muscle development, maintenance and disease 
Chaperone proteins are critical for protein folding and stability, and hence are necessary for normal cellular organization and function. Recent studies have begun to interrogate the role of this specialized class of proteins in muscle biology. During development, chaperone-mediated folding of client proteins enables their integration into nascent sarcomeres. In addition to assisting with muscle differentiation, chaperones play a key role in maintenance of muscle tissues. Further, disruption of the chaperone network can result in neuromuscular disease. In this review, we discuss how chaperones are involved in myofibrillogenesis, sarcomere maintenance and muscle disorders. We also consider the possibilities of therapeutically targeting chaperones to treat muscle disease.
doi:10.1002/ar.22980
PMCID: PMC4135391  PMID: 25125177
Chaperones; sarcomere; myofibril; protein folding; contractile proteins
11.  Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle 
Posttranslational addition of Arg to proteins, mediated by arginyltransferase ATE1 has been first observed in 1963 and remained poorly understood for decades since its original discovery. Recent work demonstrated the global nature of arginylation and its essential role in multiple physiological pathways during embryogenesis and adulthood and identified over a hundred of proteins arginylated in vivo. Among these proteins, the prominent role belongs to the actin cytoskeleton and the muscle, and follow up studies strongly suggests that arginylation constitutes a novel biological regulator of contractility. This review presents an overview of the studies of protein arginylation that led to the discovery of its major role in the muscle.
doi:10.1002/ar.22969
PMCID: PMC4135399  PMID: 25125176
12.  Probing muscle ankyrin-repeat protein (MARP) structure and function 
Muscle ankyrin-repeat proteins (MARPs) have been shown to serve diverse functions within cardiac and skeletal muscle cells. Apart from their interactions with sarcomeric proteins like titin or myopalladin that locate them along myofilaments, MARPs are able to shuttle to the nucleus where they act as modulators for a variety of transcription factors. The deregulation of MARPs in many cardiac and skeletal myopathies contributes to their use as biomarkers for these diseases.
Many of their functions are attributed to their domain composition. MARPs consist of an N-terminal coiled-coil domain responsible for their dimerization. The C-terminus contains a series of ankyrin-repeats, whose best-characterized function is to bind to the N2A-region of the giant sarcomeric protein titin.
Here we investigate the nature of their dimerization and their interaction with titin more closely. We demonstrate that the coiled-coil domain in all MARPs enables their homo- and hetero-dimerization in antiparallel fashion. Protein complementation experiments indicate further antiparallel binding of the ankyrin-repeats to titin’s N2A-region. Binding of MARP to titin also affects its PKA mediated phosphorylation. We demonstrate further that MARPs themselves are phosphorylated by PKA and PKC, potentially altering their structure or function. These studies elucidate structural relationships within the stretch-responsive MARP/titin complex in cross-striated muscle cells, and may relate to disease relevant posttranslational modifications of MARPs and titin that alter muscle compliance.
doi:10.1002/ar.22968
PMCID: PMC4135402  PMID: 25125175
muscle; MARP; titin; phosphorylation; kinase
13.  Expression of myotilin during chicken development 
Several missense mutations in the Z-band protein, myotilin, have been implicated in human muscle diseases such as myofibrillar myopathy, spheroid body myopathy, and distal myopathy. Recently, we have reported the cloning of chicken myotilin cDNA. In this study, we have investigated the expression of myotilin in cross-striated muscles from developing chicken by qRT-PCR and in situ hybridizations. In situ hybridization of embryonic stages shows myotilin gene expression in heart, somites, neural tissue, eyes and otocysts. RT-PCR and qRT-PCR data, together with in situ hybridization results point to a biphasic transcriptional pattern for MYOT gene during early heart development with maximum expression level in the adult. In skeletal muscle, the expression level starts decreasing after embryonic day 20 and declines in the adult skeletal muscles. Western blot assays of myotilin in adult skeletal muscle reveal a decrease in myotilin protein compared with levels in embryonic skeletal muscle. Our results suggest that MYOT gene may undergo transcriptional activation and repression that varies between tissues in developing chicken. We believe this is the first report of the developmental regulation on myotilin expression in non-mammalian species.
doi:10.1002/ar.22964
PMCID: PMC4135462  PMID: 25125173
chick embryos; myotilin; Z-bands; skeletal muscle; heart
14.  Finding the sweet spot: Assembly and Glycosylation of the Dystrophin-Associated Glycoprotein Complex 
The dystrophin-associated glycoprotein complex (DGC) is a collection of glycoproteins that are essential for the normal function of striated muscle and many other tissues. Recent genetic studies have implicated the components of this complex in over a dozen forms of muscular dystrophy. Furthermore, disruption of the DGC has been implicated in many forms of acquired disease. This review aims to summarize the current state of knowledge regarding the processing and assembly of dystrophin associated proteins with a focus primarily on the dystroglycan heterodimer and the sarcoglycan complex. These proteins form the transmembrane portion of the DGC and undergo a complex multi-step processing with proteolytic cleavage, differential assembly, and both N- and O-glycosylation. The enzymes responsible for this processing and a model describing the sequence and subcellular localization of these events are discussed.
doi:10.1002/ar.22974
PMCID: PMC4135523  PMID: 25125182
15.  Localization of sarcomeric proteins during myofibril assembly in cultured mouse primary skeletal myotubes 
It is important to understand how muscle forms normally in order to understand muscle diseases that result in abnormal muscle formation. Although the structure of myofibrils is well understood, the process through which the myofibril components form organized contractile units is not clear. Based on the staining of muscle proteins in avian embryonic cardiomyocytes, we previously proposed that myofibrils formation occurred in steps that began with premyofibrils followed by nascent myofibrils and ending with mature myofibrils. The purpose of this study was to determine whether the premyofibril model of myofibrillogenesis developed from studies developed from studies in avian cardiomyocytes was supported by our current studies of myofibril assembly in mouse skeletal muscle. Emphasis was on establishing how the key sarcomeric proteins, F-actin, non-muscle myosin II, muscle myosin II, and α-actinin were organized in the three stages of myofibril assembly. The results also test previous reports that non-muscle myosins II A and B are components of the Z-Bands of mature myofibrils, data that are inconsistent with the premyofibril model. We have also determined that in mouse muscle cells, telethonin is a late assembling protein that is present only in the Z-Bands of mature myofibrils. This result of using specific telethonin antibodies supports the approach of using YFP-tagged proteins to determine where and when these YFP-sarcomeric fusion proteins are localized. The data presented in this study on cultures of primary mouse skeletal myocytes are consistent with the premyofibril model of myofibrillogenesis previously proposed for both avian cardiac and skeletal muscle cells.
doi:10.1002/ar.22981
PMCID: PMC4145531  PMID: 25125171
Premyofibrils; Myofibrillogenesis; Non-muscle Myosin II; α-actinin; telethonin
16.  Understanding Cardiac Sarcomere Assembly With Zebrafish Genetics 
Mutations in sarcomere genes have been found in many inheritable human diseases, including hypertrophic cardiomyopathy. Elucidating the molecular mechanisms of sarcomere assembly shall facilitate understanding of the pathogenesis of sarcomere-based cardiac disease. Recently, biochemical and genomic studies have identified many new genes encoding proteins that localize to the sarcomere. However, their precise functions in sarcomere assembly and sarcomere-based cardiac disease are unknown. Here, we review zebrafish as an emerging vertebrate model for these studies. We summarize the techniques offered by this animal model to manipulate genes of interest, annotate gene expression, and describe the resulting phenotypes. We survey the sarcomere genes that have been investigated in zebrafish and discuss the potential of applying this in vivo model for larger-scale genetic studies.
doi:10.1002/ar.22975
PMCID: PMC4151122  PMID: 25125181
cardiomyopathy; genetics; myofibrillogenesis; sarcomere; zebrafish
17.  Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans 
The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessary proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function.
doi:10.1002/ar.22965
PMCID: PMC4163936  PMID: 25125169
18.  Memories of Annemarie Weber 
doi:10.1002/ar.22963
PMCID: PMC4196439  PMID: 25125168
19.  Smooth muscle – protein translocation and tissue function 
Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca2+ sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or toand-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca2+ sensitization in intact SM tissues and organ systems.
doi:10.1002/ar.22970
PMCID: PMC4244760  PMID: 25125185
20.  Recent Advances in Muscle Research 
doi:10.1002/ar.22986
PMCID: PMC4351654  PMID: 25125167
21.  Genetics of Hearing and Deafness 
This article is a review of the genes and genetic disorders that affect hearing in humans and a few selected mouse models of deafness. Genetics is playing an increasingly critical role in the practice of medicine. This is not only in part to the importance that genetic knowledge has on traditional genetic diseases but also in part to the fact that genetic knowledge provides an understanding of the fundamental biological process of most diseases. The proteins coded by the genes related to hearing loss (HL) are involved in many functions in the ear, such as cochlear fluid homeostasis, ionic channels, stereocilia morphology and function, synaptic transmission, gene regulation, and others. Mouse models play a crucial role in understanding of the pathogenesis associated with these genes. Different types of familial HL have been recognized for years; however, in the last two decades, there has been tremendous progress in the discovery of gene mutations that cause deafness. Most of the cases of genetic deafness recognized today are monogenic disorders that can be broadly classified by the mode of inheritance (i.e., autosomal dominant, autosomal recessive, X-linked, and mitochondrial inheritance) and by the presence of associated phenotypic features (i.e., syndromic; and nonsyndromic). In terms of nonsyndromic HL, the chromosomal locations are currently known for ~ 125 loci (54 for dominant and 71 for recessive deafness), 64 genes have been identified (24 for dominant and 40 for recessive deafness), and there are many more loci for syndromic deafness and X-linked and mitochondrial DNA disorders (http://hereditaryhearingloss.org). Thus, today’s clinician must understand the science of medical genetics as this knowledge can lead to more effective disease diagnosis, counseling, treatment, and prevention.
doi:10.1002/ar.22579
PMCID: PMC4523052  PMID: 23044516
nonsyndromic hearing loss; genetics; gene; mutation; diagnosis; treatment
22.  Myeloid-Lymphoid Ontogeny in the Rhesus Monkey (Macaca mulatta) 
Establishment of a functional immune system has important implications for health and disease, yet questions remain regarding the mechanism, location, and timing of development of myeloid and lymphoid cell compartments. The goal of this study was to characterize the ontogeny of the myeloid-lymphoid system in rhesus monkeys to enhance current knowledge of the developmental sequence of B cell (CD20, CD79), T cell (CD3, CD4, CD8, FoxP3), dendritic cell (CD205), and macrophage (CD68) lineages in the fetus and infant. Immunohistochemical assessments addressed the temporal and spatial expression of select phenotypic markers in the developing liver, thymus, spleen, lymph nodes, gut-associated lymphoid tissue (GALT), and bone marrow with antibodies known to cross-react with rhesus cells. CD3 was the earliest lymphoid marker identified in the first trimester thymus and, to a lesser extent, in the spleen. T cell markers were also expressed mid-gestation on cells of the liver, spleen, thymus, and in Peyer’s patches of the small and large intestine, and where CCR5 expression was noted. A myeloid marker, CD68, was found on hepatic cells near blood islands in the late first trimester. B cell markers were observed mid-second trimester in the liver, spleen, thymus, lymph nodes, bone marrow spaces, and occasionally in GALT. By the late third trimester and postnatally, secondary follicles with germinal centers were present in the thymus, spleen, and lymph nodes. These results suggest that immune ontogeny in monkeys is similar in temporal and anatomical sequence when compared to humans, providing important insights for translational studies.
doi:10.1002/ar.22943
PMCID: PMC4120262  PMID: 24867874
Fetus; Infant; Monkey; Immune System; Ontogeny
23.  Of mice, monkeys, and men: Physiological and morphological evidence for evolutionary divergence of function in mimetic musculature 
Facial expression is a universal means of visual communication in humans and many other primates. Humans have the most complex facial display repertoire among primates but gross morphological studies have not found greater complexity in human mimetic musculature. The present study examines microanatomical aspects of mimetic musculature in order to test hypotheses related to human mimetic musculature physiology, function, and evolutionary morphology. Samples from the orbicularis oris (OOM) and the zygomaticus major muscles (ZM) in laboratory mice (N=3), rhesus macaques (N=3) and humans (N=3) were collected. Fiber type proportions (slow-twitch and fast-twitch), fiber cross-sectional area, diameter, and length were calculated and means were statistically compared among groups. Results showed that macaques had the greatest percentage of fast fibers in both muscles (followed by humans) and humans had the greatest percentage of slow fibers in both muscles. Macaques and humans typically did not differ from one another in morphometrics except for fiber length where humans had longer fibers. While sample sizes are low, results from the present study may indicate that the rhesus macaque OOM and ZM are specialized primarily to assist with maintenance of the rigid dominance hierarchy via rapid facial displays of submission and aggression while human musculature may have evolved not only under pressure to work in facial expressions but also in development of speech.
doi:10.1002/ar.22913
PMCID: PMC4051843  PMID: 24706483
facial muscle; orbicularis oris; zygomaticus major; speech; fiber type
24.  Variation in Timing, Duration, Intensity, and Direction of Adolescent Growth in the Mandible, Maxilla, and Cranial Base: the Fels Longitudinal Study 
There is considerable individual variation in the timing, duration, and intensity of growth that occurs in the craniofacial complex during childhood and adolescence. The purpose of this paper is to describe the extent of this variation between traits and between individuals within the Fels Longitudinal Study. Polynomial multilevel models were used to estimate the ages of onset, peak velocity, and cessation of adolescent growth, the time between these ages, the amount of growth between these ages, and peak velocity. This was done at both the group and individual levels for standard cephalometric measurements of the lengths of the mandible, maxilla, and cranial base, the gonial angle, and the saddle angle. Data are from 293 untreated boys and girls age 4 to 24 years in the Fels Longitudinal Study. The timing of the adolescent growth spurt was, in general, not significantly different between the mandible and the maxilla, with each having an earlier age of onset, later age of peak velocity, and later age of cessation of growth compared to the cranial base length. Compared to lengths, angles had in general later ages of onset, peak velocity, and cessation of growth. Accurate characterization of the ontogenetic trajectories of the traits in the craniofacial complex is critical for both clinicians seeking to optimize treatment timing and anatomists interested in examining heterochrony.
doi:10.1002/ar.22918
PMCID: PMC4103980  PMID: 24737730
craniofacial; puberty; development; mathematical modeling; maturation; multilevel model; orthodontics
25.  Enigmatic Cranial Superstructures among Chamorro Ancestors from the Mariana Islands: Gross Anatomy and Microanatomy 
This study focuses on the gross anatomy, anatomic relations, microanatomy, and meaning of three enigmatic, geographically-patterned, quasi-continuous superstructures of the posterior cranium. Collectively known as occipital superstructures (OSS), these traits are the occipital torus tubercle (TOT), retromastoid process (PR), and posterior supramastoid tubercle (TSP). When present, TOT, PR and TSP develop at posterior cranial attachment sites of the upper trapezius, superior oblique and sternocleidomastoid muscles, respectively. Marked expression and co-occurrence of these OSS are virtually circumscribed within Oceania and reach highest recorded frequencies in proto-historic Chamorros (CHamoru) of the Mariana Islands. Prior to undertaking scanning electron microscopy (SEM) work, our working multifactorial model for OSS development was that early-onset, long-term, chronic activity-related microtrauma at enthesis sites led to exuberant reactive or reparative responses in a substantial minority of genetically predisposed (and mostly male) individuals. SEM imaging, however, reveals topographic patterning that questions, but does not negate, activity-induction of these superstructures. While OSS appear macroscopically as relatively large and discrete phenomena, SEM findings reveal a unique, widespread and seemingly systemic distribution of structures over the occipital surface that have the appearance of OSS microforms. Nevertheless, apparent genetic underpinnings, anatomic relationships with muscle entheses, and positive correlation of OSS development with humeral robusticity continue to suggest that these superstructures have potential to at once bear witness to Chamorro population history and inform osteobiographical constructions of chronic activity patterns in individuals bearing them. Further work is outlined that would illuminate the proximate and ultimate meanings of OSS.
doi:10.1002/ar.22920
PMCID: PMC4078988  PMID: 24753475
Chamorros; occipital torus tubercle; retromastoid process; posterior supramastoid tubercle; entheses; functional anatomy; SEM survey

Results 1-25 (161)