Search tips
Search criteria

Results 1-25 (175)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  [No title available] 
PMCID: PMC3933947  PMID: 24390970
2.  [No title available] 
PMCID: PMC3946340  PMID: 24323731
3.  [No title available] 
PMCID: PMC3946359  PMID: 24323726
4.  [No title available] 
PMCID: PMC3946373  PMID: 24323720
5.  [No title available] 
PMCID: PMC3948321  PMID: 24323706
6.  [No title available] 
PMCID: PMC3961762  PMID: 24399572
7.  [No title available] 
PMCID: PMC3978072  PMID: 24323733
8.  The Effects of Estrogen in Ischemic Stroke 
Translational stroke research  2012;4(4):390-401.
Stroke is a leading cause of death and the most common cause of long-term disability in the USA. Women have a lower incidence of stroke compared with men throughout most of the lifespan which has been ascribed to protective effects of gonadal steroids, most notably estrogen. Due to the lower stroke incidence observed in pre-menopausal women and robust preclinical evidence of neuroprotective and anti-inflammatory properties of estrogen, researchers have focused on the potential benefits of hormones to reduce ischemic brain injury. However, as women age, they are disproportionately affected by stroke, coincident with the loss of estrogen with menopause. The risk of stroke in elderly women exceeds that of men and it is clear that in some settings estrogen can have pro-inflammatory effects. This review will focus on estrogen and inflammation and its interaction with aging.
PMCID: PMC4275797  PMID: 24323337
Stroke; Aging; Sex; Estrogen
9.  Heat Shock Proteins in Brain: Role of Hsp70, Hsp 27 and HO-1 (Hsp32) and Their Therapeutic Potential 
Translational stroke research  2013;4(6):10.1007/s12975-013-0271-4.
Heat shock proteins are induced by heat shock via HSF proteins binding to heat shock elements in their promoters. Hsp70 is massively induced in response to misfolded proteins following cerebral ischemia in all cell types, but is induced mainly in neurons in the ischemic penumbra. Over expression of Hsp70 via transgenes and viruses or systemic administration of Hsp70 fusion proteins that allow it to cross the blood brain barrier protect brain against ischemia in most reported studies. Hsp27 can exist as unphosphorylated large oligomers that prevent misfolded protein aggregates and improve cell survival. P-Hsp27 small oligomers bind specific protein targets to improve survival. In brain Protein Kinase D phosphorylates Hsp27 following ischemia which then binds ASK1 to prevent MKK4/7, JNK, Jun induced apoptosis and decrease infarct volumes following focal cerebral ischemia. Heme oxygenase-1 (HO-1) metabolizes heme to carbon monoxide, ferrous ion and biliverdin. CO activates cGMP to promote vasodilation, and biliverdin is converted to bilirubin which can serve as an anti-oxidant both of which may contribute to the reported protective role of HO-1 in cerebral ischemia and subarachnoid hemorrhage. However, ferrous ion can react with hydrogen peroxide to produce pro-oxidant hydroxyl radicals which may explain the harmful role of HO-1 in intracerebral hemorrhage. Heat shock proteins as a class have great potential as treatments for cerebrovascular disease and have yet to be tested in the clinic.
PMCID: PMC3858824  PMID: 24323422
Brain Ischemia; Hemorrhage; Heat Shock Proteins; Immune; Apoptosis; Heme
10.  ER stress and effects of DHA as an ER stress inhibitor 
Translational stroke research  2013;4(6):10.1007/s12975-013-0282-1.
The endoplasmic reticulum (ER) functions in the synthesis, folding, modification, and transport of newly synthesized transmembrane and secretory proteins. The ER also has important roles in the storage of intracellular Ca2+ and regulation of Ca2+ homeostasis. The integrity of the Ca2+ homeostasis in the ER lumen is vital for proper folding of proteins. A dysregulation of ER Ca2+ could result in an increase in unfolded or misfolded proteins and ER stress. ER stress triggers activation of the unfolded protein response (UPR), which is a fundamentally adaptive cell response and functions as a cytoprotective mechanism by over-expression of relevant chaperones and the global shutdown of protein synthesis. UPR activation occurs when three key ER membrane-sensor proteins detect an accumulation of aberrant proteins. The UPR acts to allievate ER stress, but if the stress is too severe or prolonged, apoptosis will be triggered. In this review, we focused on ER stress and the effects of docosahexaenoic acid (DHA) on ER stress. DHA and its bioactive compounds, such as protectins and resolvins, provide neuroprotection against oxidative stress, apoptosis, and have the ability to resolve inflammation in neurological diseases. New studies reveal that DHA blocks inositol trisphosphate receptor (IP3R)-mediated ER Ca2+ depletion and ER stress. The administration of DHA post-traumatic brain injury (TBI) reduces ER stress, aberrant protein accumulation, and neurological deficits. Therefore, DHA presents therapeutic potentials for TBI via its pleiotropic effects including inhibition of ER stress.
PMCID: PMC3864671  PMID: 24323417
C/EBP homologous protein; ER-associated protein degradation; ER Ca2+ dysregulation; eukaryotic translation initiation factor 2α subunit; unfolded protein response
11.  Augmentation of Normal and Glutamate-Impaired Neuronal Respiratory Capacity by Exogenous Alternative Biofuels 
Translational stroke research  2013;4(6):10.1007/s12975-013-0275-0.
Mitochondrial respiratory capacity is critical for responding to changes in neuronal energy demand. One approach toward neuroprotection is administration of alternative energy substrates (“biofuels”) to overcome brain injury-induced inhibition of glucose-based aerobic energy metabolism. This study tested the hypothesis that exogenous pyruvate, lactate, β-hydroxybutyrate, and acetyl-L-carnitine each increase neuronal respiratory capacity in vitro either in the absence of, or following transient excitotoxic glutamate receptor stimulation. Compared to the presence of 5 mM glucose alone, the addition of pyruvate, lactate, or β-hydroxybutyrate (1.0 – 10.0 mM) to either day in vitro (DIV) 14 or 7 rat cortical neurons resulted in significant, dose-dependent stimulation of respiratory capacity, measured by cell respirometry as the maximal O2 consumption rate in the presence of the respiratory uncoupler FCCP. A thirty minute exposure to 100 μM glutamate impaired respiratory capacity for DIV 14 but not DIV 7 neurons. Glutamate reduced the respiratory capacity for DIV 14 neurons with glucose alone by 25% and also reduced respiratory capacity with glucose plus pyruvate, lactate or β-hydroxybutyrate. However, respiratory capacity in glutamate-exposed neurons following pyruvate or β-hydroxybutyrate addition was still at least as high as that obtained with glucose alone in the absence of glutamate exposure. These results support the interpretation that previously observed neuroprotection by exogenous pyruvate, lactate, or β-hydroxybutyrate is at least partially mediated by their preservation of neuronal respiratory capacity.
PMCID: PMC3864688  PMID: 24323418
Excitotoxicity; energy metabolism; pyruvate; lactate; β-hydroxybutyrate; acetyl-L-carnitine; mitochondria
12.  mRNA Redistribution during Permanent Focal Cerebral Ischemia 
Translational stroke research  2013;4(6):10.1007/s12975-013-0274-1.
Translation arrest occurs in neurons following focal cerebral ischemia and is irreversible in penumbral neurons destined to die. Following global cerebral ischemia, mRNA is sequestered away from 40S ribosomal subunits as mRNA granules, precluding translation. Here, we investigated mRNA granule formation using fluorescence in situ histochemistry out to 8 h permanent focal cerebral ischemia using middle cerebral artery occlusion in Long Evans rats with and without diabetes. Neuronal mRNA granules colocalized with PABP, HuR, and NeuN, but not 40S or 60S ribosomal subunits, or organelle markers. The volume of brain with mRNA granule-containing neurons decreased exponentially with ischemia duration, and was zero after 8 h permanent focal cerebral ischemia or any duration of ischemia in diabetic rats. These results show that neuronal mRNA granule response has a limited range of insult intensity over which it is expressed. Identifying the limits of effective neuronal stress response to ischemia will be important for developing effective stroke therapies.
PMCID: PMC3864703  PMID: 24323415
Focal cerebral ischemia; HSP70; HuR; Middle cerebral artery occlusion; mRNA granules; Protein synthesis inhibition; Stress granules; Translation arrest
13.  microRNA regulates chaperone network in cerebral ischemia 
Translational stroke research  2013;4(6):10.1007/s12975-013-0280-3.
The highly evolutionarily conserved 70 kDa heat shock protein (HSP70) family was first understood for its role in protein folding and response to stress. Subsequently additional functions have been identified for it in regulation of organelle interaction, of the inflammatory response, and of cell death and survival. Overexpression of HSP70 family members is associated with increased resistance to and improved recovery from cerebral ischemia. MicroRNAs (miRNAs) are important post-transcriptional regulators that interact with multiple target messenger RNAs (mRNA) coordinately regulating target genes, including chaperones. The members of the HSP70 family are now appreciated to work together as networks to facilitate organelle communication and regulate inflammatory signaling and cell survival after cerebral ischemia. This review will focus on the new concept of the role of the chaperone network in the organelle network, and its novel regulation by miRNA.
PMCID: PMC3864745  PMID: 24323423
chaperone; mitochondria; endoplasmic reticulum; microRNA; stroke
14.  HuR Function and Translational State Analysis Following Global Brain Ischemia and Reperfusion 
Translational stroke research  2013;4(6):10.1007/s12975-013-0273-2.
Prolonged translation arrest in post-ischemic hippocampal CA1 pyramidal neurons precludes translation of induced stress genes and directly correlates with cell death. We evaluated regulation of mRNAs containing adenine and uridine rich elements (ARE) by assessing HuR protein and hsp70 mRNA nuclear translocation, HuR polysome binding, and translation state analysis of CA1 and CA3 at 8 hr reperfusion after 10 min global cerebral ischemia. There was no difference between CA1 and CA3 at 8 hr of reperfusion in nuclear or cytoplasmic HuR protein or hsp70 mRNA, or HuR polysome association, suggesting neither mechanism contributed to post-ischemic outcome. Translation state analysis revealed that 28% and 58% of unique mRNAs significantly different between 8hR and NIC, in CA3 and CA1, respectively, were not polysome-bound. There was significantly greater diversity of polysome-bound mRNAs in reperfused CA3 compared to CA1, and in both regions ARE-containing mRNAs accounted for 4% – 5% of the total. These data indicate that post-transcriptional ARE-containing mRNA regulation occurs in reperfused neurons and contributes to post-ischemic outcome. Understanding the differential responses of vulnerable and resistant neurons to ischemia will contribute to the development of effective neuroprotective therapies.
PMCID: PMC3864748  PMID: 24323414
CA1; CA3; global cerebral ischemia; HSP70; HuR; microarray; stress responses; translation state analysis
Translational stroke research  2013;4(6):10.1007/s12975-013-0303-0.
PMCID: PMC3875832  PMID: 24323424
Clinical Trial; Door-to-Needle; Translational; Stroke; Hemorrhage; NIHSS; STAIR; RIGOR
17.  Clinical Application of Preconditioning and Postconditioning to Achieve Neuroprotection 
Translational stroke research  2013;4(1):19-24.
Ischemic conditioning is a form of endogenous protection induced by transient, subcritical ischemia in a tissue. Organs with high sensitivity to ischemia, such as the heart, the brain, and spinal cord represent the most critical and potentially promising targets for potential therapeutic applications of ischemic conditioning. Numerous preclinical investigations have systematically studied the molecular pathways and potential benefits of both pre- and post-conditioning with promising results. The purpose of this review is to summarize the present knowledge on cerebral pre-and post-conditioning, with an emphasis in the clinical application of these forms of neuroprotection.
A systematic Medline search for the terms preconditioning and postconditioning was performed. Publications related to the nervous system and to human applications were selected and analyzed.
Pre-and post-conditioning appear to provide similar levels of neuroprotection. The preconditioning window of benefit can be subdivided into early and late effects, depending on whether the effect appears immediately after the sublethal stress or with a delay of days. In general early effects have been associated post-translational modification of critical proteins (membrane receptors, mitochondrial respiratory chain) while late effects are the result of gene up-or down-regulation. Transient ischemic attacks appear to represent a form of clinically relevant preconditioning by inducing ischemic tolerance in the brain and reducing the severity of subsequent strokes. Remote forms of ischemic pre- and post-conditioning have been more commonly used in clinical studies, as the remote application reduces the risk of injuring the target tissue for which protection is pursued. Limb transient ischemia is the preferred method of induction of remote conditioning with evidence supporting its safety. Clinical studies in a variety of populations at risk of central nervous damage including carotid disease, cervical myelopathy and subarachnoid hemorrhage have shown improvement in surrogate markers of injury.
Promising preclinical and early clinical studies noting improvement in surrogate markers of central nervous injury after the use of remote pre- and post-conditioning treatments demand follow-up systematic investigations to address effectiveness. Challenges in the application of these techniques to pressing clinical cerebrovascular disease ought to be overcome through careful, well-designed, translational investigations.
PMCID: PMC4224593  PMID: 24323188
Preconditioning; Postconditioning; Ischemia; Reperfusion Injury; Neuroprotection; Brain injury
18.  Remote Ischemic Postconditioning: Harnessing Endogenous Protection in a Murine Model of Vascular Cognitive Impairment 
We previously reported that remote limb ischemic conditioning (RLIC; PERconditioning) during acute stroke confers neuroprotection, possibly due to increased cerebral blood flow (CBF). Vascular cognitive impairment (VCI) is a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is regarded as the most valid model for VCI. We hypothesized that RLIC (postconditioning; RIPostC) will augment CBF during chronic cerebral hypoperfusion (CCH) and prevent cognitive impairment in the BCAS model. BCAS using customized microcoil was performed in C57/B6 male mice to establish CCH. A week after the BCAS surgery, mice were treated with RIPostC-therapy once daily for 2 weeks. CBF was measured with laser speckle contrast imager at different time points. Cognitive testing was performed at 4-week post-BCAS, and brain tissue was harvested for biochemistry. BCAS led to chronic hypoperfusion resulting into impaired cognitive function as tested by novel object recognition (NOR). Histological examinations revealed that BCAS triggered inflammatory responses and caused frequent vacuolization and cell death. BCAS also increased the generation and accumulation of amyloid beta protein (Aβ), resulting into the loss of white matter (WM) and myelin basic protein (MBP). RIPostC-therapy showed both acute increase as well as sustained improvement in CBF even after the cessation of therapy for a week. RIPostC improved cognitive function, inhibited inflammatory responses, prevented the cell death, reduced the generation and accumulation of Aβ, and protected WM integrity. RIPostC is effective in the BCAS model and could be an attractive low-cost conventional therapy for aged individuals with VCI. The mechanisms by which RIPostC improves CBF and attenuates tissue damage need to be investigated in the future.
Electronic supplementary material
The online version of this article (doi:10.1007/s12975-014-0374-6) contains supplementary material, which is available to authorized users.
PMCID: PMC4297613  PMID: 25351177
Vascular cognitive impairment; Remote ischemic postconditioning; Chronic cerebral hypoperfusion; Arterial stenosis; Transient ischemic attacks; White matter lesion
19.  P2X7 Receptor Inhibition Increases CNTF in the Subventricular Zone, But Not Neurogenesis or Neuroprotection After Stroke in Adult Mice 
Translational stroke research  2013;4(5):10.1007/s12975-013-0265-2.
Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40–60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.
PMCID: PMC3846398  PMID: 24312160
Ciliary neurotrophic factor; Mice; Neurogenesis; Neuroprotection; P2X7 purinergic receptor; Stroke
20.  Perlecan Domain V Is Neuroprotective and Affords Functional Improvement in a Photothrombotic Stroke Model in Young and Aged Mice 
Translational stroke research  2013;4(5):515-523.
With the failure of so many pre-clinical stroke studies to translate into the clinic, there is a need to find new therapeutics to minimize the extent of cellular damage and aid in functional recovery. Domain V (DV), the c-terminal protein fragment of the vascular basement membrane component, perlecan, was recently shown to afford significant protection in multiple transient middle cerebral artery occlusion stroke models. We sought here to determine whether DV might have similar therapeutic properties in a focal photothrombosis stroke model in both young and aged mice. Young (3-month old) and aged (24-month old) mice underwent photothrombotic stroke to the motor cortex and were then treated with DV or phosphate buffered saline vehicle at different initial time points up to 7 days. Stroke volume was analyzed histologically using cresyl violet and functional recovery assessed behaviorally on both the grid-walking and cylinder tasks. In young mice, DV administration resulted in a significant decrease in infarct volume when treatment started 3 or 6 h post-stroke. In aged mice, DV administration was only protective when started 3 h post-stroke. In addition to a decrease in the area of infarction, DV treatment was effective in significantly decreasing the number of foot-faults on the grid-walking task and improving use of the stroke-affected limb in the cylinder task in both young and aged. Previously, we have shown that DV can alter the expression profile of various astroglial markers. Consistent with our previous finding, treatment groups that showed therapeutic potential in both young and aged mice also showed an elevation in glial fibrillary acidic protein (GFAP) expression in peri-infarct regions. We conclude that DV is neuroprotective and affords significant improvements in functional recovery in both young and aged mice after focal ischemia. These data also highlight a therapeutic time-window shift that is narrower in aged compared with young mice and is associated with an elevation in GFAP expression and heightened astrogliosis.
PMCID: PMC3937769  PMID: 24323378
Cerebral infarct; Extracellular matrix; Behavioral recovery
21.  Dynamic Contrast-Enhanced MRI Evaluation of Cerebral Cavernous Malformations 
Translational stroke research  2013;4(5):500-506.
The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22–76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E–6 to 9.63E–4 min−1, mean 3.55E–4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E–4, not statistically different from mean WM Ki of 1.47E–4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects.
PMCID: PMC3939060  PMID: 24323376
MRI dynamic contrast enhanced; Brain/brain stem; Genetic defects
22.  Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats 
Translational stroke research  2013;4(5):10.1007/s12975-013-0270-5.
Intracerebral hemorrhage (ICH) is primarily a disease of the elderly. Deferoxamine (DFX), an iron chelator, reduces long-term neurological deficits and brain atrophy after ICH in aged rats. In the present study, we investigated whether DFX can reduce acute ICH-induced neuronal death and whether it affects the endogenous response to ICH (ferritin upregulation and hematoma resolution) in aged rats. Male Fischer 344 rats (18 months old) had an intracaudate injection of 100 μL autologous whole blood into the right basal ganglia and were treated with DFX (100 mg/kg) or vehicle 2 hours post-ICH and then every 12 hours up to 7 days. Rats were euthanized 1, 3, or 7 days later for neuronal death, ferritin and hematoma size measurements. Plasma ferritin levels and behavioral outcome following ICH were also examined. DFX treatment significantly reduced ICH-induced neuronal death and neurological deficits. DFX also suppressed ferritin upregulation in the ipsilateral basal ganglia after ICH and hematoma lysis (hematoma volume at day 7: 13.2±4.9 vs. 3.8±1.2 mm3 in vehicle-treated group, p < 0.01). However, effects of DFX on plasma ferritin levels after ICH did not reach significance. In conclusion, DFX reduces neuronal death and neurological deficits after ICH in aged rats. It also affects the endogenous response to ICH.
PMCID: PMC3810989  PMID: 24187595
Cerebral hemorrhage; deferoxamine; iron; neuronal death
23.  Phenotypic changes in immune cell subsets reflect increased infarct volume in male vs. female mice 
Translational stroke research  2013;4(5):10.1007/s12975-013-0268-z.
Inflammatory responses in brain after cerebral ischemia have been studied extensively in male but not female mice, thus potentially giving a less-than-accurate view of gender-based pathological processes. In humans, cerebral infarcts are typically smaller in premenopausal females than age-matched males. In the current study, we confirmed smaller infarcts in female vs. male mice after middle cerebral artery occlusion and 96 hours of reperfusion. Moreover, we explored immunological alterations related to this difference and found that the percentage of CD4+ T lymphocytes was significantly higher in males than females in spleens with increased expression of the activation markers, CD69 and CD44. In contrast, the percentage of CD8+ T lymphocytes was significantly higher in females than males in spleens, leading to the identification of a small but distinct population of IL-10-secreting CD8+CD122+ T-suppressor cells that were also increased in females. Finally, we observed that males have a greater percentage of activated macrophages/microglia in brain than females, as well as increased expression of the VLA-4 adhesion molecule in both brain and spleen. This new information suggesting gender-dependent immunological mechanisms in stroke implies that effective treatments for human stroke may also be gender specific.
PMCID: PMC3811047  PMID: 24187596
Experimental stroke; gender bias; immune markers; activated T-cells; T-suppressor cells; ischemia
24.  Role of the Sphingosine Metabolism Pathway on Neurons against Experimental Cerebral Ischemia in Rats 
Translational stroke research  2013;4(5):10.1007/s12975-013-0260-7.
Although there is evidence that sphingosine-1-phosphate receptor-1 (S1P1) activation occurs following experimental brain injury, there is little information about its metabolic pathway in cerebral ischemia. The purpose of this study was to evaluate the role of the sphingosine metabolic pathway including S1P1, sphingosine kinases 1 (SphK1), and 2 (SphK2) in transient middle cerebral artery occlusion (MCAO). Fifty-eight male Sprague-Dawley rats were used to asses temporal profiles of S1P1, SphK1 and 2 on neurons in infarct and periinfarct cortices at pre-infarct state, 6, and 24 hours after MCAO. The animals were then treated with vehicle and 0.25mg/kg FTY720, which is an agonist of S1P receptors, and evaluated regarding neurological function, infarct volume, and S1P1 expression on neurons at 24 hours after MCAO. The expressions of S1P1, SphK1, and SphK2 were significantly decreased after MCAO. Labeling of all markers were reduced in the infarct cortex but remained present in the periinfarct cortex, and some were found to be on neurons. Significant improvements of neurological function and brain injury were observed in the FTY720 group compared with the vehicle and untreated groups, although S1P1 expression on neurons was reduced in the FTY720 group compared with the vehicle group. We demonstrated that S1P1, SphK1, and SphK2 were downregulated in the infarct cortex, whereas they were preserved in the periinfarct cortex where FTY720 reduced neuronal injury possibly via S1P1 activation. Our findings suggest that activation of the sphingosine metabolic pathway may be neuroprotective in cerebral ischemia.
PMCID: PMC3811943  PMID: 24187597
sphingosine 1-phosphate receptor-1; sphingosine kinase 1; sphingosine kinase 2; FTY720; transient middle cerebral artery occlusion
25.  Ventricular fibrillation-induced cardiac arrest in the rat as a model of global cerebral ischemia 
Translational stroke research  2013;4(5):10.1007/s12975-013-0267-0.
Cardiopulmonary arrest remains one of the leading causes of death and disability in Western countries. Although ventricular fibrillation (VF) models in rodents mimic the “square wave” type of insult (rapid loss of pulse and pressure) commonly observed in adult humans at the onset of cardiac arrest (CA), they are not popular because of the complicated animal procedure, poor animal survival and thermal injury. Here we present a modified, simple, reliable, ventricular fibrillation-induced rat model of CA that will be useful in studying mechanisms of CA-induced delayed neuronal death as well as the efficacy of neuroprotective drugs. CA was induced in male Sprague Dawley rats using a modified method of von Planta et al. In brief, VF was induced in anesthetized, paralyzed, mechanically ventilated rats by an alternating current delivered to the entrance of the superior vena cava into the heart. Resuscitation was initiated by administering a bolus injection of epinephrine and sodium bicarbonate followed by mechanical ventilation and manual chest compressions and countershock with a 10-J DC current. Neurologic deficit score was higher in the CA group compared to the sham group during early reperfusion periods, suggesting brain damage. Significant damage in CA1 hippocampus (21% normal neurons compared to control animals) was observed following histopathological assessment at seven days of reperfusion. We propose that this method of VF-induced CA in rat provides a tool to study the mechanism of CA-induced neuronal death without compromising heart functions.
PMCID: PMC3811953  PMID: 24187598
Hippocampus; global cerebral ischemia; cardiac arrest; animal model

Results 1-25 (175)