PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (70)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  EULAR recommendations reflect advances in imaging 
Nature reviews. Rheumatology  2015;11(7):388-389.
Substantial advances have been made in the field of imaging in spondyloarthritis, with respect to both the techniques themselves and their applications, but how should clinicians and radiologists make the most of these developments? New recommendations from EULAR could provide valuable guidance.
doi:10.1038/nrrheum.2015.80
PMCID: PMC4493421  PMID: 26055546
2.  Juvenile fibromyalgia: current status of research and future developments 
Nature reviews. Rheumatology  2013;10(2):89-96.
Juvenile-onset fibromyalgia (JFM) is a poorly understood chronic pain condition most commonly affecting adolescent girls. The condition is characterized by widespread musculoskeletal pain and other associated symptoms, including fatigue, nonrestorative sleep, headaches, irritable bowel symptoms, dysautonomia and mood disorders such as anxiety and/or depression. In the past few years, there has been a greater focus on understanding JFM in adolescents. Research studies have provided insight into the clinical characteristics of this condition and its effect on both short-term and long-term psychosocial and physical functioning. The importance of early and effective intervention is being recognized, as research has shown that symptoms of JFM tend to persist and do not resolve over time as was previously believed. Efforts to improve treatments for JFM are underway, and new evidence strongly points to the potential benefits of cognitive–behavioural therapy on improving mood and daily functioning. Research into pharmacotherapy and other nonpharmacological options is in progress. Advancements in the understanding of adult fibromyalgia have paved the way for future studies on diagnosis, assessment and management of JFM. This Review focuses on our current knowledge of the condition, provides an update of the latest research advances, and highlights areas for further study.
doi:10.1038/nrrheum.2013.177
PMCID: PMC4470499  PMID: 24275966
3.  Fracture healing: mechanisms and interventions 
Nature reviews. Rheumatology  2014;11(1):45-54.
Fractures are the most common large-organ, traumatic injuries to humans. The repair of bone fractures is a postnatal regenerative process that recapitulates many of the ontological events of embryonic skeletal development. Although fracture repair usually restores the damaged skeletal organ to its pre-injury cellular composition, structure and biomechanical function, about 10% of fractures will not heal normally. This article reviews the developmental progression of fracture healing at the tissue, cellular and molecular levels. Innate and adaptive immune processes are discussed as a component of the injury response, as are environmental factors, such as the extent of injury to the bone and surrounding tissue, fixation and the contribution of vascular tissues. We also present strategies for fracture treatment that have been tested in animal models and in clinical trials or case series. The biophysical and biological basis of the molecular actions of various therapeutic approaches, including recombinant human bone morphogenetic proteins and parathyroid hormone therapy, are also discussed.
doi:10.1038/nrrheum.2014.164
PMCID: PMC4464690  PMID: 25266456
4.  Sensors of the innate immune system: their link to rheumatic diseases 
Nature reviews. Rheumatology  2010;6(3):146-156.
Evidence strongly suggests that excessive or protracted signaling, or both, by cell-surface or intracellular innate immune receptors is central to the pathogenesis of most autoimmune and autoinflammatory rheumatic diseases. The initiation of aberrant innate and adaptive immune responses in autoimmune diseases can be triggered by microbes and, at times, by endogenous molecules—particularly nucleic acids and related immune complexes—under sterile conditions. By contrast, most autoinflammatory syndromes are generally dependent on germline or de novo gene mutations that cause or facilitate inflammasome assembly. The consequent production of proinflammatory cytokines, principally interferon-α/β and tumor necrosis factor in autoimmune diseases, and interleukin-lβ in autoinflammatory diseases, leads to the creation of autoamplification feedback loops and chronicity of these syndromes. These findings have resulted in a critical reappraisal of pathogenetic mechanisms, and provide a basis for the development of novel diagnostic and therapeutic modalities for these diseases.
doi:10.1038/nrrheum.2009.278
PMCID: PMC4437225  PMID: 20142813
5.  Progress in intra-articular therapy 
Nature reviews. Rheumatology  2013;10(1):11-22.
Diarthrodial joints are well suited to intra-articular injection, and the local delivery of therapeutics in this fashion brings several potential advantages to the treatment of a wide range of arthropathies. Possible benefits include increased bioavailability, reduced systemic exposure, fewer adverse events, and lower total drug costs. Nevertheless, intra-articular therapy is challenging because of the rapid egress of injected materials from the joint space; this elimination is true of both small molecules, which exit via synovial capillaries, and of macromolecules, which are cleared by the lymphatic system. In general, soluble materials have an intra-articular dwell time measured only in hours. Corticosteroids and hyaluronate preparations constitute the mainstay of FDA-approved intra-articular therapeutics. Recombinant proteins, autologous blood products and analgesics have also found clinical use via intra-articular delivery. Several alternative approaches, such as local delivery of cell and gene therapy, as well as the use of microparticles, liposomes, and modified drugs, are in various stages of preclinical development.
doi:10.1038/nrrheum.2013.159
PMCID: PMC4402210  PMID: 24189839
6.  Sequencing the functional antibody repertoire—diagnostic and therapeutic discovery 
Nature reviews. Rheumatology  2014;11(3):171-182.
The development of high-throughput DNA sequencing technologies has enabled large-scale characterization of functional antibody repertoires, a new method of understanding protective and pathogenic immune responses. Important parameters to consider when sequencing antibody repertoires include the methodology, the B-cell population and clinical characteristics of the individuals analysed, and the bioinformatic analysis. Although focused sequencing of immunoglobulin heavy chains or complement determining regions can be utilized to monitor particular immune responses and B-cell malignancies, high-fidelity analysis of the full-length paired heavy and light chains expressed by individual B cells is critical for characterizing functional antibody repertoires. Bioinformatic identification of clonal antibody families and recombinant expression of representative members produces recombinant antibodies that can be used to identify the antigen targets of functional immune responses and to investigate the mechanisms of their protective or pathogenic functions. Integrated analysis of coexpressed functional genes provides the potential to further pinpoint the most important antibodies and clonal families generated during an immune response. Sequencing antibody repertoires is transforming our understanding of immune responses to autoimmunity, vaccination, infection and cancer. We anticipate that antibody repertoire sequencing will provide next-generation biomarkers, diagnostic tools and therapeutic antibodies for a spectrum of diseases, including rheumatic diseases.
doi:10.1038/nrrheum.2014.220
PMCID: PMC4382308  PMID: 25536486
7.  Emerging regulators of the inflammatory process in osteoarthritis 
Nature reviews. Rheumatology  2014;11(1):35-44.
Chronic, low-grade inflammation in osteoarthritis (OA) contributes to symptoms and disease progression. Effective disease-modifying medical OA therapies are lacking, but better understanding inflammatory pathophysiology in OA could lead to transformative therapy. Networks of diverse innate inflammatory danger signals, including complement and alarmins, are activated in OA. Through inflammatory mediators, biomechanical cartilage injury and oxidative stress compromise chondrocyte viability and reprogram viable chondrocytes to hypertrophic differentiation and proinflammatory, and procatabolic responses in mechanistically similar ways. Integral to this reprogramming are certain ‘switching’ pathways in transcriptional signals, other than the well-characterized effects of NFκB and mitogen-activated protein kinase signalling. HIF-2α transcriptional signalling and ZIP8-mediated Zn2+ uptake, with downstream MTF1 transcriptional signalling, have been implicated in chondrocyte reprogramming, but further validation is required. Permissive factors in procatabolic reprogramming of OA chondrocytes by inflammatory mediators also have come to light, including impaired bioenergetics, such as altered mitochondrial function and decreased activity of the bioenergy sensors AMPK and SIRT1. These factors interact with molecular inflammatory responses and proteostasis mechanisms that normally resolve cell stress, such as the unfolded protein response and autophagy. Bioenergy-sensing by AMPK and SIRT1 modulates proteostasis and provides ‘stop signals’ for oxidative stress, inflammatory, and matrix catabolic processes in chondrocytes. The complexity of molecular inflammatory processes in OA, and the involvement of multiple inflammatory mediators in tissue repair responses, raises daunting questions about how to therapeutically target inflammatory processes and macroscopic inflammation in OA. Bioenergy sensing might provide a pragmatic ‘entry point’ for novel strategies to limit OA progression.
doi:10.1038/nrrheum.2014.162
PMCID: PMC4374654  PMID: 25266449
8.  Cartilage Transplants Hold Promise for Challenging Bone Defects 
Nature reviews. Rheumatology  2014;10(3):129-130.
The challenges of healing have led investigators to question existing paradigms in the hopes of uncovering overlooked solutions. Such is the case in a recent study showing that introduction of a cartilage construct into a mouse tibial defect induces remarkable healing owing to the transformation of donor chondrocytes into new bone.
doi:10.1038/nrrheum.2013.216
PMCID: PMC4312000  PMID: 24418762
9.  Epigenetics in 2013: DNA methylation and miRNA—key roles in systemic autoimmunity 
Nature reviews. Rheumatology  2014;10(2):72-74.
Several advances in 2013 have improved our understanding of how epigenetic mechanisms affect autoimmune disorders. Many new insights were made into the regulation of gene expression by DNA methylation in systemic lupus erythematosus. For rheumatoid arthritis, complex interrelationships between DNA methylation and microRNAs in regulating gene expression were described.
doi:10.1038/nrrheum.2013.211
PMCID: PMC4332710  PMID: 24418763
10.  Role of Cytokines in Intervertebral Disc Degeneration: Pain and Disc-content 
Nature reviews. Rheumatology  2013;10(1):44-56.
Degeneration of the intervertebral disc is the major contributor to back/neck and radicular pain. It is characterized by an elevation in levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1 α/β, IL-6 and IL-17 secreted by the disc cells themselves; these cytokines promote matrix degradation, chemokine production and changes in cell phenotype. The resulting imbalance between catabolic and anabolic responses leads to degeneration, as well as herniation and radicular pain. Release of chemokines from degenerating discs promote infiltration and activation of T and B cells, macrophages, neutrophils, and mast cells further amplifying the inflammatory cascade. Immunocyte migration into the disc is accompanied by the appearance of microvasculature and nerve fibers arising from the dorsal root ganglion (DRG). In this inflammatory milieu, neurogenic factors in particular nerve growth factor (NGF) and brain-derive neurotrophic factor (BDNF) generated by disc and immune cells induce expression of pain associated cation channels in DRGs. Depolarization of these channels is likely to promote discogenic and radicular pain and reinforce the cytokine-mediated degenerative cascade. Taken together, the enhanced understanding of the contribution of cytokines and immune cells to catabolic and nociceptive processes provide new targets for treating symptomatic disc disease.
doi:10.1038/nrrheum.2013.160
PMCID: PMC4151534  PMID: 24166242
11.  Immune Mechanisms in Medium and Large Vessel Vasculitis 
Nature reviews. Rheumatology  2013;9(12):731-740.
Summary
Vasculitis of the medium and large arteries, most often presenting as giant cell arteritis (GCA), is an infrequent, but potentially fatal type of immune-mediated vascular disease. The site of the aberrant immune reaction, the mural layers of the artery, is strictly defined by vascular dendritic cells, endothelial cells, vascular smooth muscle cells and fibroblasts which engage in an interaction with T cells and macrophages to ultimately cause luminal stenosis or aneurysmal wall damage of the vessel. A multitude of effector cytokines, all known as critical mediators in host-protective immunity, has been identified in the vasculitic lesions. Two dominant cytokine clusters, one centering on the IL-6/IL-17 axis, the other on the IL-12/IFN-γ axis, have been connected with disease activity. These two clusters appear to serve different roles in the vasculitic process. The IL-6/IL-17 cluster is highly responsive to standard corticosteroid therapy, whereas the IL-12/IFN-γ cluster is resistant to steroid-mediated immunosuppression. The information exchange between vascular and immune cells and stabilization of the vasculitic process involves members of the NOTCH receptor and ligand family. Focusing on elements in the tissue context of GCA, instead of broadly suppressing host immunity, may allow for a more tailored therapeutic approach and spare patients the unwanted side-effects of aggressive immunosuppression.
doi:10.1038/nrrheum.2013.161
PMCID: PMC4277683  PMID: 24189842
12.  Selection bias in rheumatic disease research 
Nature reviews. Rheumatology  2014;10(7):403-412.
The identification of modifiable risk factors for the development of rheumatic conditions and their sequelae is crucial for reducing the substantial worldwide burden of these diseases. However, the validity of such research can be threatened by sources of bias, including confounding, measurement and selection biases. In this Review, we discuss potentially major issues of selection bias—a type of bias frequently overshadowed by other bias and feasibility issues, despite being equally or more problematic—in key areas of rheumatic disease research. We present index event bias (a type of selection bias) as one of the potentially unifying reasons behind some unexpected findings, such as the ‘risk factor paradox’—a phenomenon exemplified by the discrepant effects of certain risk factors on the development versus the progression of osteoarthritis (OA) or rheumatoid arthritis (RA). We also discuss potential selection biases owing to differential loss to follow-up in RA and OA research, as well as those due to the depletion of susceptibles (prevalent user bias) and immortal time bias. The lesson remains that selection bias can be ubiquitous and, therefore, has the potential to lead the field astray. Thus, we conclude with suggestions to help investigators avoid such issues and limit the impact on future rheumatology research.
doi:10.1038/nrrheum.2014.36
PMCID: PMC4260806  PMID: 24686510
13.  Towards a mechanism-based approach to pain management in osteoarthritis 
Nature reviews. Rheumatology  2013;9(11):654-664.
Pain is the defining symptom of osteoarthritis (OA), yet available treatment options, of which NSAIDs are the most common, provide inadequate pain relief and are associated with serious health risks when used long term. Chronic pain pathways are subject to complex levels of control and modulation, both in the periphery and in the central nervous system. Ongoing clinical and basic research is uncovering how these pathways operate in OA. Indeed, clinical investigation into the types of pain associated with progressive OA, the presence of central sensitization, the correlation with structural changes in the joint, and the efficacy of novel analgesics affords new insights into the pathophysiology of OA pain. Moreover, studies in disease-specific animal models enable the unravelling of the cellular and molecular pathways involved. We expect that increased understanding of the mechanisms by which chronic OA-associated pain is generated and maintained will offer opportunities for targeting and improving the safety of analgesia. In addition, using clinical and genetic approaches, it might become possible to identify subsets of patients with pain of different pathophysiology, thus enabling a tailored approach to pain management.
doi:10.1038/nrrheum.2013.138
PMCID: PMC4151882  PMID: 24045707
14.  Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions 
Nature reviews. Rheumatology  2011;7(7):416-426.
Systemic juvenile idiopathic arthritis (sJIA) has long been recognized as unique among childhood arthritides, because of its distinctive clinical and epidemiological features, including an association with macrophage activation syndrome. Here, we summarize research into sJIA pathogenesis. The triggers of disease are unknown, although infections are suspects. Once initiated, sJIA seems to be driven by innate proinflammatory cytokines. Endogenous Toll-like receptor ligands, including S100 proteins, probably synergize with cytokines to perpetuate inflammation. These and other findings support the hypothesis that sJIA is an autoinflammatory condition. Indeed, IL-1 is implicated as a pivotal cytokine, but the source of excess IL-1 activity remains obscure and the role of IL-1 in chronic arthritis is less clear. Another hypothesis is that a form of hemophagocytic lymphohistiocytosis underlies sJIA, with varying degrees of its expression across the spectrum of disease. Alternatively, sJIA with MAS might be a genetically distinct subtype. Yet another hypothesis proposes that inadequate downregulation of immune activation is central to sJIA, supporting evidence for which includes ‘alternative activation’ of monocyte and macrophages and possible deficiencies in IL-10 and T regulatory cells. Some altered immune phenotypes persist during clinically inactive disease, which suggests that this stage might represent compensated inflammation. Despite much progress being made, many questions remain, providing fertile ground for future research.
doi:10.1038/nrrheum.2011.68
PMCID: PMC4180659  PMID: 21647204
15.  Back to the Future: Oral targeted therapy for RA and other autoimmune diseases 
Nature reviews. Rheumatology  2013;9(3):173-182.
Summary
The molecular biology revolution coupled to the development of monoclonal antibody technology enabled remarkable therapeutic progress in rheumatology, comprising an array of highly effective biological agents. With advances in understanding of the molecular nature of immune cell receptors came elucidation of intracellular signaling pathways engaged by these receptors. These discoveries beg the question whether selectively targeting key intracellular molecules with small molecules would add to the rheumatologic armamentarium. In this review, we discuss several strategies that appear to be successful and ponder their implications for the future of immune targeted therapeutics. We focus on kinases inhibitors, primarily those targeting Janus kinase family members, and spleen tyrosine kinase (Syk) given their advanced status in clinical development and application. Thereafter we will summarize other signal targets that might offer promise in future.
doi:10.1038/nrrheum.2013.7
PMCID: PMC4169143  PMID: 23419429
16.  Oligoarticular and polarticular JIA: epidemiology and pathogenesis 
Nature reviews. Rheumatology  2009;5(11):616-626.
Summary
Juvenile idiopathic arthritis (JIA) refers to a group of chronic childhood arthropathies, currently classified into subtypes primarily on the basis of clinical features. Research has focused on the hypothesis that these subtypes arise through distinct etiologic pathways. In this Review, we discuss four subtypes of JIA: persistent oligoarticular, extended oligoarticular, rheumatoid-factor positive polyarticular and rheumatoid-factor-negative polyarticular. These subtypes differ in prevalence between ethnic groups and are associated with different HLA alleles. Non-HLA genetic risk factors have also been identified, some of which reveal further molecular differences between these subtypes, while others suggest mechanistic overlap. Investigations of immunophenotypes also provide insights into subtype differences: adaptive immunity appears to have a prominent role in both polyarticular and oligoarticular JIA, and the more-limited arthritis observed in persistent oligoarticular JIA as compared with extended oligoarticular JIA may reflect more-potent immunoregulatory T-cell activity in the former. Tumor necrosis factor seems to be a key mediator of both polyarticular and oligoarticular JIA, especially in the extended oligoarticular subtype, although elevated levels of other cytokines also are observed. Limited data on monocytes, dendritic cells, B cells, natural killer T cells, and neutrophils suggest that the contributions of these cells differ across subtypes of JIA. Within each subtype, however, common pathways appear to drive joint damage.
doi:10.1038/nrrheum.2009.209
PMCID: PMC4159935  PMID: 19806151
17.  Of mice and men: how animal models advance our understanding of T-cell function in RA 
Nature reviews. Rheumatology  2014;10(3):160-170.
The involvement of autoreactive T cells in the pathogenesis of rheumatoid arthritis (RA) as well as in autoimmune animal models of arthritis has been well established; however, unanswered questions, such as the role of joint-homing T cells, remain. Animal models of arthritis are superb experimental tools in demonstrating how T cells trigger joint inflammation, and thus can help to further our knowledge of disease mechanisms and potential therapies. In this Review, we discuss the similarities and differences in T-cell subsets and functions between RA and mouse arthritis models. For example, various T-cell subsets are involved in both human and mouse arthritis, but differences might exist in the cytokine regulation and plasticity of these cells. With regard to joint-homing T cells, an abundance of synovial T cells is present in humans compared with mice. On the other hand, local expansion of type 17 T helper (TH17) cells is observed in some animal models, but not in RA. Finally, whereas T-cell depletion essentially failed in RA, antibody targeting of T cells can work, at least preventatively, in most arthritis models. Clearly, additional human and animal studies are needed to fill the gap in our understanding of the specific contribution of T-cell subsets to arthritis in mice and men.
doi:10.1038/nrrheum.2013.205
PMCID: PMC3953227  PMID: 24394350
18.  Erosion defined: back to basics 
Nature reviews. Rheumatology  2013;9(6):323-324.
Current classification criteria for rheumatoid arthritis allow its classification on the basis of the presence of erosions, in the absence of other indicators. Nevertheless, definition or quantitation of erosions was lacking. A European task force has now addressed this issue by analysing radiographic erosions in two cohorts of patients with early disease.
doi:10.1038/nrrheum.2013.60
PMCID: PMC4140649  PMID: 23609778
19.  SLE nephritis – learning from murine models 
Nature reviews. Rheumatology  2009;6(1):13-20.
SLE nephritis is a challenging clinical condition for which current therapies are unsatisfactory with respect to both remission induction and unwanted toxicities. Despite intervention the rates of end stage renal disease appear to be increasing in the US. New discoveries over the last decade have greatly improved our understanding of immune activation and effector inflammatory pathways in SLE nephritis but these have not yet translated into an effective new approved therapeutic. An analysis of the mechanisms of new immunomodulatory drugs in multiple models of murine SLE shows clearly that interacting networks of immune and effector pathways are recruited as disease progresses. It is therefore difficult to reverse established disease by targeting a single cell population or inflammatory pathway once long-lived autoreactive lymphocyte populations are present and peripheral organs are inflamed. These data suggest that we need to consider new paradigms for the management of SLE that include earlier immune intervention, long-term maintenance therapies and protection of target organs.
doi:10.1038/nrrheum.2009.240
PMCID: PMC4120882  PMID: 19949431
20.  Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment 
Nature reviews. Rheumatology  2012;8(11):656-664.
Bone erosion is a central feature of rheumatoid arthritis and is associated with disease severity and poor functional outcome. Erosion of periarticular cortical bone, the typical feature observed on plain radiographs in patients with rheumatoid arthritis, results from excessive local bone resorption and inadequate bone formation. The main triggers of articular bone erosion are synovitis, including the production of proinflammatory cytokines and receptor activator of nuclear factor κB ligand (RANKL), as well as antibodies directed against citrullinated proteins. Indeed, both cytokines and autoantibodies stimulate the differentiation of bone-resorbing osteoclasts, thereby stimulating local bone resorption. Although current antirheumatic therapy inhibits both bone erosion and inflammation, repair of existing bone lesions, albeit physiologically feasible, occurs rarely. Lack of repair is due, at least in part, to active suppression of bone formation by proinflammatory cytokines. This Review summarizes the substantial progress that has been made in understanding the pathophysiology of bone erosions and discusses the improvements in the diagnosis, monitoring and treatment of such lesions.
doi:10.1038/nrrheum.2012.153
PMCID: PMC4096779  PMID: 23007741
21.  Pathogenesis and prevention of rheumatic disease: focus on preclinical RA and SLE 
Nature reviews. Rheumatology  2014;10(4):212-228.
Established and emerging data demonstrate that a ‘preclinical’ period of disease precedes the onset of clinical rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), as well as other autoimmune rheumatic diseases (ARDs).This preclinical stage of development of disease is characterized by abnormalities in disease-related biomarkers before the onset of the clinically apparent signs and symptoms. Numerous genetic and environmental risk factors for ARDs have also been identified, and many of these factors are likely to act before the clinical appearance of tissue injury to initiate and/or propagate autoimmunity and autoimmune disease. Thus, biomarkers representative of these autoimmune processes could potentially be used in conjunction with other clinical parameters during the preclinical period of ARDs to predict the future development of clinically apparent disease. This Review focuses on the preclinical stages of RA and SLE, as our current understanding of these diseases can be used to present an overall model of the development of ARDs that might ultimately be used to develop screening programmes and preventive strategies. Important considerations for the future development of such approaches, in particular, the issues that require additional research and how they might be addressed, are also discussed.
doi:10.1038/nrrheum.2014.6
PMCID: PMC4090326  PMID: 24514912
22.  Repair of erosion in RA—shifting the balance to formation 
Nature reviews. Rheumatology  2011;7(11):626-628.
Repair of bone erosions in rheumatoid arthritis has been considered a difficult goal to achieve. However—with better therapies at hand to control synovial inflammation—sensitive μCT imaging techniques now available confirm that repair of bone erosion is possible, and begins at the base of erosive lesions.
doi:10.1038/nrrheum.2011.133
PMCID: PMC4078983  PMID: 21931342
23.  Oxidative stress in the pathology and treatment of systemic lupus erythematosus 
Nature reviews. Rheumatology  2013;9(11):674-686.
Oxidative stress is increased in systemic lupus erythematosus (SLE), and it contributes to immune system dysregulation, abnormal activation and processing of cell-death signals, autoantibody production and fatal comorbidities. Mitochondrial dysfunction in T cells promotes the release of highly diffusible inflammatory lipid hydroperoxides, which spread oxidative stress to other intracellular organelles and through the bloodstream. Oxidative modification of self antigens triggers autoimmunity, and the degree of such modification of serum proteins shows striking correlation with disease activity and organ damage in SLE. In T cells from patients with SLE and animal models of the disease, glutathione, the main intracellular antioxidant, is depleted and serine/threonine-protein kinase mTOR undergoes redox-dependent activation. In turn, reversal of glutathione depletion by application of its amino acid precursor, N-acetylcysteine, improves disease activity in lupus-prone mice; pilot studies in patients with SLE have yielded positive results that warrant further research. Blocking mTOR activation in T cells could conceivably provide a well-tolerated and inexpensive alternative approach to B-cell blockade and traditional immunosuppressive treatments. Nevertheless, compartmentalized oxidative stress in self-reactive T cells, B cells and phagocytic cells might serve to limit autoimmunity and its inhibition could be detrimental. Antioxidant therapy might also be useful in ameliorating damage caused by other treatments. This Review thus seeks to critically evaluate the complexity of oxidative stress and its relevance to the pathogenesis and treatment of SLE.
doi:10.1038/nrrheum.2013.147
PMCID: PMC4046645  PMID: 24100461
24.  Osteoarthritis of the spine: the facet joints 
Nature reviews. Rheumatology  2012;9(4):216-224.
Osteoarthritis (OA) of the spine involves the facet joints, which are located in the posterior aspect of the vertebral column and, in humans, are the only true synovial joints between adjacent spinal levels. Facet joint osteoarthritis (FJ OA) is widely prevalent in older adults, and is thought to be a common cause of back and neck pain. The prevalence of facet-mediated pain in clinical populations increases with increasing age, suggesting that FJ OA might have a particularly important role in older adults with spinal pain. Nevertheless, to date FJ OA has received far less study than other important OA phenotypes such as knee OA, and other features of spine pathoanatomy such as degenerative disc disease. This Review presents the current state of knowledge of FJ OA, including relevant anatomy, biomechanics, epidemiology, and clinical manifestations. We present the view that the modern concept of FJ OA is consonant with the concept of OA as a failure of the whole joint, and not simply of facet joint cartilage.
doi:10.1038/nrrheum.2012.199
PMCID: PMC4012322  PMID: 23147891
25.  The phenotypic and genetic signatures of common musculoskeletal pain conditions 
Nature reviews. Rheumatology  2013;9(6):340-350.
Musculoskeletal pain conditions, such as fibromyalgia and low back pain, tend to coexist in affected individuals and are characterized by a report of pain greater than expected based on the results of a standard physical evaluation. The pathophysiology of these conditions is largely unknown, we lack biological markers for accurate diagnosis, and conventional therapeutics have limited effectiveness. Growing evidence suggests that chronic pain conditions are associated with both physical and psychological triggers, which initiate pain amplification and psychological distress; thus, susceptibility is dictated by complex interactions between genetic and environmental factors. Herein, we review phenotypic and genetic markers of common musculoskeletal pain conditions, selected based on their association with musculoskeletal pain in previous research. The phenotypic markers of greatest interest include measures of pain amplification and ‘psychological’ measures (such as emotional distress, somatic awareness, psychosocial stress and catastrophizing). Genetic polymorphisms reproducibly linked with musculoskeletal pain are found in genes contributing to serotonergic and adrenergic pathways. Elucidation of the biological mechanisms by which these markers contribute to the perception of pain in these patients will enable the development of novel effective drugs and methodologies that permit better diagnoses and approaches to personalized medicine.
doi:10.1038/nrrheum.2013.43
PMCID: PMC3991785  PMID: 23545734

Results 1-25 (70)