Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds 
Open Biology  2013;3(2):120158.
We have developed a robust, fully automated anti-parasitic drug-screening method that selects compounds specifically targeting parasite enzymes and not their host counterparts, thus allowing the early elimination of compounds with potential side effects. Our yeast system permits multiple parasite targets to be assayed in parallel owing to the strains’ expression of different fluorescent proteins. A strain expressing the human target is included in the multiplexed screen to exclude compounds that do not discriminate between host and parasite enzymes. This form of assay has the advantages of using known targets and not requiring the in vitro culture of parasites. We performed automated screens for inhibitors of parasite dihydrofolate reductases, N-myristoyltransferases and phosphoglycerate kinases, finding specific inhibitors of parasite targets. We found that our ‘hits’ have significant structural similarities to compounds with in vitro anti-parasitic activity, validating our screens and suggesting targets for hits identified in parasite-based assays. Finally, we demonstrate a 60 per cent success rate for our hit compounds in killing or severely inhibiting the growth of Trypanosoma brucei, the causative agent of African sleeping sickness.
PMCID: PMC3603448  PMID: 23446112
drug screening; parasites; yeast; automation; tropical diseases
2.  Towards Robot Scientists for autonomous scientific discovery 
We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist.
PMCID: PMC2813846  PMID: 20119518
3.  Discrimination of Modes of Action of Antifungal Substances by Use of Metabolic Footprinting 
Applied and Environmental Microbiology  2004;70(10):6157-6165.
Diploid cells of Saccharomyces cerevisiae were grown under controlled conditions with a Bioscreen instrument, which permitted the essentially continuous registration of their growth via optical density measurements. Some cultures were exposed to concentrations of a number of antifungal substances with different targets or modes of action (sterol biosynthesis, respiratory chain, amino acid synthesis, and the uncoupler). Culture supernatants were taken and analyzed for their “metabolic footprints” by using direct-injection mass spectrometry. Discriminant function analysis and hierarchical cluster analysis allowed these antifungal compounds to be distinguished and classified according to their modes of action. Genetic programming, a rule-evolving machine learning strategy, allowed respiratory inhibitors to be discriminated from others by using just two masses. Metabolic footprinting thus represents a rapid, convenient, and information-rich method for classifying the modes of action of antifungal substances.
PMCID: PMC522091  PMID: 15466562
4.  Rapid and Quantitative Detection of the Microbial Spoilage of Meat by Fourier Transform Infrared Spectroscopy and Machine Learning 
Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique with considerable potential for application in the food and related industries. We show here that this technique can be used directly on the surface of food to produce biochemically interpretable “fingerprints.” Spoilage in meat is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage. Chicken breasts were purchased from a national retailer, comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-IR measurements were taken directly from the meat surface using attenuated total reflectance, and the total viable counts were obtained by classical plating methods. Quantitative interpretation of FT-IR spectra was possible using partial least-squares regression and allowed accurate estimates of bacterial loads to be calculated directly from the meat surface in 60 s. Genetic programming was used to derive rules showing that at levels of 107 bacteria·g−1 the main biochemical indicator of spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a metabolic snapshot and quantify, noninvasively, the microbial loads of food samples accurately and rapidly in 60 s, directly from the sample surface. We believe this approach will aid in the Hazard Analysis Critical Control Point process for the assessment of the microbiological safety of food at the production, processing, manufacturing, packaging, and storage levels.
PMCID: PMC123922  PMID: 12039738

Results 1-4 (4)