PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (141)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  MEMS-based Force-clamp Analysis of the Role of Body Stiffness in C. elegans Touch Sensation 
Touch is enabled by mechanoreceptor neurons in the skin and plays an essential role in our everyday lives, but is among the least understood of our five basic senses. Force applied to the skin deforms these neurons and activates ion channels within them. Despite the importance of the mechanics of the skin in determining mechanoreceptor neuron deformation and ultimately touch sensation, the role of mechanics in touch sensitivity is poorly understood. Here, we use the model organism Caenorhabditis elegans to directly test the hypothesis that body mechanics modulate touch sensitivity. We demonstrate a microelectromechanical system (MEMS)-based force clamp that can apply calibrated forces to freely crawling C. elegans worms and measure touch-evoked avoidance responses. This approach reveals that wild-type animals sense forces < 1 μN and indentation depths < 1 μm. We use both genetic manipulation of the skin and optogenetic modulation of body wall muscles to alter body mechanics. We find that small changes in body stiffness dramatically affect force sensitivity, while having only modest effects on indentation sensitivity. We investigate the theoretical body deformation predicted under applied force and conclude that local mechanical loads induce inward bending deformation of the skin to drive touch sensation in C. elegans.
doi:10.1039/c3ib20293c
PMCID: PMC3701114  PMID: 23598612
Mechanotransduction; touch; biomechanics; C. elegans; piezoresistor; MEMS cantilever; optogenetics; cuticle; touch receptor neurons; behavior
2.  Sphingolipid Metabolites Modulate Dielectric Characteristics of Cells in a Mouse Ovarian Cancer Progression Model 
Currently, conventional cancer treatment regimens often rely upon highly toxic chemotherapeutics or target oncogenes that are variably expressed within the heterogeneous cell population of tumors. These challenges highlight the need for novel treatment strategies that 1) are non-toxic yet able to at least partially reverse the aggressive phenotype of the disease to a benign or very slow-growing state, and 2) act on the cells independently of variably expressed biomarkers. Using a label-independent rapid microfluidic cell manipulation strategy known as contactless dielectrophoresis (cDEP), we investigated the effect of non-toxic concentrations of two bioactive sphingolipid metabolites, sphingosine (So), with potential anti-tumor properties, and sphingosine-1-phosphate (S1P), a tumor-promoting metabolite, on the intrinsic electrical properties of early and late stages of mouse ovarian surface epithelial (MOSE) cancer cells. Previously, we demonstrated that electrical properties change as cells progress from a benign early stage to late malignant stages. Here, we demonstrate an association between So treatment and a shift in the bioelectrical characteristics of late stage MOSE (MOSE-L) cells towards a profile similar to that of benign MOSE-E cells. Particularly, the specific membrane capacitance of MOSE-L cells shifted toward that of MOSE-E cells, decreasing from 23.94±2.75 to 16.46±0.62 mF/m2 after So treatment, associated with a decrease in membrane protrusions. In contrast, S1P did not reverse the electrical properties of MOSE-L cells. This work is the first to indicate that treatment with non-toxic doses of So correlates with changes in the electrical properties and surface roughness of cells. It also demonstrates the potential of cDEP to be used as a new, rapid technique for drug efficacy studies, and eventually designing more personalized treatment regimens.
doi:10.1039/c3ib00008g
PMCID: PMC3704134  PMID: 23609351
3.  Microfluidics-integrated time-lapse imaging for analysis of cellular dynamics 
An understanding of the mechanisms regulating cellular responses has recently been augmented by innovations enabling the observation of phenotypes at high spatiotemporal resolution. Technologies such as microfluidics have sought to expand the throughput of these methods, although assimilation with advanced imaging strategies has been limited. Here, we describe the pairing of high resolution time-lapse imaging with microfluidic multiplexing for the analysis of cellular dynamics, utilizing a design selected for facile fabrication and operation, and integration with microscopy instrumentation. This modular, medium-throughput platform enables the long-term imaging of living cells at high numerical aperture (via oil immersion) by using a conserved 96-well, ~6 × 5 mm2 imaging area with a variable input/output channel design chosen for the number of cell types and microenvironments under investigation. In the validation of this system, we examined fundamental features of cell cycle progression, including mitotic kinetics and spindle orientation dynamics, through the high-resolution parallel analysis of model cell lines subjected to anti-mitotic agents. We additionally explored the self-renewal kinetics of mouse embryonic stem cells, and demonstrate the ability to dynamically assess and manipulate stem cell proliferation, detect rare cell events, and measure extended time-scale correlations. We achieved an experimental throughput of >900 cells/experiment, each observed at >40× magnification for up to 120 h. Overall, these studies illustrate the capacity to probe cellular functions and yield dynamic information in time and space through the integration of a simple, modular, microfluidics-based imaging platform.
doi:10.1039/b923699f
PMCID: PMC4040291  PMID: 20532320
live cell imaging; cell cycle kinetics; embryonic stem cells; multiplexed microscopy; fluorescent-tagged molecules
5.  Screening therapeutic EMT blocking agents in a three-dimensional microenvironment 
Epithelial–mesenchymal transition (EMT) plays a critical role in the early stages of dissemination of carcinoma leading to metastatic tumors, which are responsible for over 90% of all cancer-related deaths. Current therapeutic regimens, however, have been ineffective in the cure of metastatic cancer, thus an urgent need exists to revisit existing protocols and to improve the efficacy of newly developed therapeutics. Strategies based on preventing EMT could potentially contribute to improving the outcome of advanced stage cancers. To achieve this goal new assays are needed to identify targeted drugs capable of interfering with EMT or to revert the mesenchymal-like phenotype of carcinoma to an epithelial-like state. Current assays are limited to examining the dispersion of carcinoma cells in isolation in conventional 2-dimensional (2D) microwell systems, an approach that fails to account for the 3-dimensional (3D) environment of the tumor or the essential interactions that occur with other nearby cell types in the tumor microenvironment. Here we present a microfluidic system that integrates tumor cell spheroids in a 3D hydrogel scaffold, in close co-culture with an endothelial monolayer. Drug candidates inhibiting receptor activation or signal transduction pathways implicated in EMT have been tested using dispersion of A549 lung adenocarcinoma cell spheroids as a metric of effectiveness. We demonstrate significant differences in response to drugs between 2D and 3D, and between monoculture and co-culture.
doi:10.1039/c2ib20209c
PMCID: PMC4039387  PMID: 23172153
Epithelial-mesenchymal transition; microfluidic; three-dimensional cell culture; drug treatment; lung cancer
6.  A new chemotaxis device for cell migration studies†‡ 
This study presents the design and optimization for in vitro use of a new versatile chemotaxis device called the NANIVID (NANo IntraVital Imaging Device), developed using advanced nano/micro fabrication techniques. The device is fabricated using microphotolithographic techniques and two substrates are bonded together using a thin polymer layer creating a sealed device with one outlet. The main structure of the device consists of two Pyrex substrates: an etched chemoattractant reservoir and a top cover, with a final size of 0.2 × 2 × 3 mm. This reservoir contains a hydrogel blend with EGF which diffuses out through a small (∼9·103 μm2) outlet. This reservoir sustains a steady release of growth factor into the surrounding environment for several hours establishing a consistent concentration gradient from the device. The focus of this study was to design and optimize the new device for cell chemotaxis studies in breast cancer cells in cell culture. Our results show that we have created a flexible, cheap, miniature and autonomous chemotaxis device and demonstrate its usefulness in 2D and 3D cell culture. We also provide preliminary data for use of the device in vivo.
doi:10.1039/c0ib00044b
PMCID: PMC4026270  PMID: 20938544
8.  Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity 
Breast cancer cell growth and therapeutic response are manipulated extrinsically by microenvironment signals. Despite recognition of the importance of the microenvironment in a variety of tumor processes, predictive measures that incorporate the activity of the surrounding cellular environment are lacking. In contrast, tumor cell biomarkers are well established in the clinic. Expression of Estrogen Receptor-alpha (ERα) is the primary defining feature of hormonally responsive tumors and is the molecular target of therapy in the most commonly diagnosed molecular subtype of breast cancer. While a number of soluble factors have been implicated in ERα activation, the complexity of signaling between the cellular microenvironment and the cancer cell implies multivariate control. The cumulative impact of the microenvironment signaling, which we define as microenvironmental activity, is more difficult to predict based on the sum of its parts. Here we tested the impact of an array of microenvironments on ERα signaling utilizing a microfluidic co-culture model. Quantitative immunofluorescence was employed to assess changes in ERα protein levels, combined with gene expression and phosphorylation status, as measures of activation. Analysis of microenvironment-induced growth under the same conditions revealed a previously undescribed correlation between growth and ERα protein down-regulation. These data suggest an expanded utility for the tumor biomarker ERα, in which the combination of dynamic regulation of ERα protein and growth in a breast cancer biosensor cell become a read-out of the microenvironmental activity.
doi:10.1039/c3ib20265h
PMCID: PMC3648339  PMID: 23559098
9.  Three-Dimensional Photolithographic Micropatterning: A Novel Tool to Probe the Complexities of Cell Migration 
In order to independently study the numerous variables that influence cell movement, it will be necessary to employ novel tools and materials that allow for exquisite control of the cellular microenvirenment. In this work, we have applied advanced 3D micropatterning technology, known as two-photon laser scanning lithography (TP-LSL), to poly(ethylene glycol) (PEG) hydrogels modified with bioactive peptides in order to fabricate precisely designed microenvirenments to guide and quantitatively investigate cell migration. Specifically, TP-LSL was used to fabricate cell adhesive PEG-RGDS micropatterns on the surface of non-degradable PEG-based hydrogels (2D) and in the interior of proteolytically degradable PEG-based hydrogels (3D). HT1080 cell migration was guided down these adhesive micropatterns in both 2D and 3D, as observed via time-lapse microscopy. Differences in cell speed, cell persistence, and cell shape were observed based on variation of adhesive ligand, hydrogel composition, and patterned area for both 2D and 3D migration. Results indicated that HT1080s migrate faster and with lower persistence on 2D surfaces, while HT1080s migrating in 3D were smaller and more elongated. Further, cell migration was shown to have a biphasic dependence on PEG-RGDS concentration and cells moving within PEG-RGDS micropatterns were seen to move faster and with more persistence over time. Importantly, the work presented here begins to elucidate the multiple complex factors involved in cell migration, with typical confounding factors being independently controlled. The development of this unique platform will allow researchers to probe how cells behave within increasingly complex 3D microenvironments that begin to mimic specifically chosen aspects of the in vivo landscape.
doi:10.1039/c3ib20280a
PMCID: PMC3742361  PMID: 23460015
10.  Rapid and automated multidimensional fluorescence microscopy profiling of 3D human breast cultures 
Three-dimensional (3D) tissue culture provides a physiologically relevant microenvironment for distinguishing malignant from non-malignant breast cell phenotypes. 3D culture assay can also be used to test novel cancer therapies and predict a differential response to radiation between normal and malignant cells in vivo. However, biological measurements in such complex models are difficult to quantify and current approaches do not allow for in-depth multifaceted assessment of individual colonies or unique sub-populations within the entire culture. This is in part due to the limitations of imaging at a range of depths in 3D culture resulting in optical aberrations and intensity attenuation. Here, we address these limitations by combining sample smearing techniques with high-throughput imaging algorithms to accurately and rapidly quantify imaging features acquired from 3D cultures without the usage of slow confocal microscopy. Multiple high resolution imaging features especially designed to characterize 3D cultures show that non-malignant human breast cells surviving large doses of ionizing radiation acquire a “swelled acinar” phenotype with fewer and larger nuclei, loss of cell connectivity and diffused basement membrane. When integrating these imaging features into hierarchical clustering classification, we could also identify subpopulations of phenotypes from individual human tumor colonies treated with ionizing radiation or/and integrin inhibitors. Such tools have therefore the potential to further characterize cell culture populations after cancer treatment and identify novel phenotypes of resistance.
doi:10.1039/c3ib20275e
PMCID: PMC3641787  PMID: 23407655
11.  Harnessing endogenous growth factor activity modulates stem cell behavior 
The influence of specific serum-borne biomolecules (e.g. heparin) on growth factor-dependent cell behavior is often difficult to elucidate in traditional cell culture due to the random, non-specific nature of biomolecule adsorption from serum. We hypothesized that chemically well-defined cell culture substrates could be used to study the influence of sequestered heparin on human mesenchymal stem cell (hMSC) behavior. Specifically, we used bio-inert self-assembled monolayers (SAMs) chemically modified with a bioinspired heparin-binding peptide (termed “HEPpep”) and an integrin-binding peptide (RGDSP) as stem cell culture substrates. Our results demonstrate that purified heparin binds to HEPpep SAMs in a dose-dependent manner, and serum-borne heparin binds specifically and in a dose-dependent manner to HEPpep SAMs. These heparin-sequestering SAMs enhance hMSC proliferation by amplifying endogenous fibroblast growth factor (FGF) signaling, and enhance hMSC osteogenic differentiation by amplifying endogenous bone morphogenetic protein (BMP) signaling. The effects of heparin-sequestering are similar to the effects of supraphysiologic concentrations of recombinant FGF-2. hMSC phenotype is maintained over multiple population doublings on heparin-sequestering substrates in growth medium, while hMSC osteogenic differentiation is enhanced in a bone morphogenetic protein-dependent manner on the same substrates during culture in osteogenic induction medium. Together, these observations demonstrate that the influence of the substrate on stem cell phenotype is sensitive to the culture medium formulation. Our results also demonstrate that enhanced hMSC proliferation can be spatially localized by patterning the location of HEPpep on the substrate. Importantly, the use of chemically well-defined SAMs in this study eliminated the confounding factor of random, non-specific biomolecule adsorption, and identified serum-borne heparin as a key mediator of hMSC response to endogenous growth factors.
doi:10.1039/c1ib00021g
PMCID: PMC3996706  PMID: 21720642
12.  Complex chemoattractive and chemorepellent Kit signals revealed by direct imaging of murine mast cells in microfluidic gradient chambers† 
Besides its cooperating effects on stem cell proliferation and survival, Kit ligand (KL) is a potent chemotactic protein. While transwell assays permit studies of the frequency of migrating cells, the lack of direct visualization precludes dynamic chemotaxis studies. In response, we utilize microfluidic chambers that enable direct observation of murine bone marrow-derived mast cells (BMMC) within stable KL gradients. Using this system, individual Kit+ BMMC were quantitatively analyzed for migration speed and directionality during KL-induced chemotaxis. Our results indicated a minimum activating threshold of ~3 ng ml−1 for chemoattraction. Analysis of cells at KL concentrations below 3 ng ml−1 revealed a paradoxical chemorepulsion, which has not been described previously. Unlike chemoattraction, which occurred continuously after an initial time lag, chemorepulsion occurred only during the first 90 minutes of observation. Both chemoattraction and chemorepulsion required the action of G-protein coupled receptors (GPCR), as treatment with pertussis toxin abrogated directed migration. These results differ from previous studies of GPCR-mediated chemotaxis, where chemorepulsion occurred at high ligand concentrations. These data indicate that Kit-mediated chemotaxis is more complex than previously understood, with the involvement of GPCRs in addition to the Kit receptor tyrosine kinase and the presence of both chemoattractive and chemorepellent phases.
doi:10.1039/c3ib40025e
PMCID: PMC3973540  PMID: 23835699
13.  Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates Phosphorylation Levels 
Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and displayed a lower ratio of phosphorylated EGFR to EGF when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 µm2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 µm2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated the mechanism of EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function.
doi:10.1039/c3ib20239a
PMCID: PMC3609930  PMID: 23416883
14.  High-content adhesion assay to address limited cell samples† 
Cell adhesion is a broad topic in cell biology that involves physical interactions between cells and other cells or the surrounding extracellular matrix, and is implicated in major research areas including cancer, development, tissue engineering, and regenerative medicine. While current methods have contributed significantly to our understanding of cell adhesion, these methods are unsuitable for tackling many biological questions requiring intermediate numbers of cells (102–105), including small animal biopsies, clinical samples, and rare cell isolates. To overcome this fundamental limitation, we developed a new assay to quantify the adhesion of ~102–103 cells at a time on engineered substrates, and examined the adhesion strength and population heterogeneity via distribution-based modeling. We validated the platform by testing adhesion strength of cancer cells from three different cancer types (breast, prostate, and multiple myeloma) on both IL-1β activated and non-activated endothelial monolayers, and observed significantly increased adhesion for each cancer cell type upon endothelial activation, while identifying and quantifying distinct subpopulations of cell-substrate interactions. We then applied the assay to characterize adhesion of primary bone marrow stromal cells to different cardiac fibroblast-derived matrix substrates to demonstrate the ability to study limited cell populations in the context of cardiac cell-based therapies. Overall, these results demonstrate the sensitivity and robustness of the assay as well as its ability to enable extraction of high content, functional data from limited and potentially rare primary samples. We anticipate this method will enable a new class of biological studies with potential impact in basic and translational research.
doi:10.1039/c3ib20224k
PMCID: PMC3832292  PMID: 23426645
15.  Probing Dynamic Cell-Substrate Interactions using Photochemically Generated Surface-Immobilized Gradients: Application to Selectin-Mediated Leukocyte Rolling 
Model substrates presenting biochemical cues immobilized in a controlled and well-defined manner are of great interest for their applications in biointerface studies that elucidate the molecular basis of cell receptor-ligand interactions. Herein, we describe a direct, photochemical method to generate one-component surface-immobilized biomolecular gradients that are applied to the study of selectin-mediated leukocyte rolling. The technique employs benzophenone-modified glass substrates, which upon controlled exposure to UV light (350 – 365 nm) in the presence of protein-containing solutions facilitate the generation of covalently immobilized protein gradients. Conditions were optimized to generate gradient substrates presenting P-selectin and PSGL-1 (P-selectin Glycoprotein Ligand-1) immobilized at site densities over a 5- to 10-fold range (from as low as ~200 molecules/μm2 to as high as 6000 molecules/μm2). The resulting substrates were quantitatively characterized via fluorescence analysis and radioimmunoassays before their use in the leukocyte rolling assays. HL-60 promyelocytes and Jurkat T lymphocytes were assessed for their ability to tether to and roll on substrates presenting immobilized P-selectin and PSGL-1 under conditions of physiologically relevant shear stress. The results of these flow assays reveal the combined effect of immobilized protein site density and applied wall shear stress on cell rolling behavior. Two-component substrates presenting P-selectin and ICAM-1 (intercellular adhesion molecule-1) were also generated to assess the interplay between these two proteins and their effect on cell rolling and adhesion. These proof-of-principle studies verify that the described gradient generation approach yields well-defined gradient substrates that present immobilized proteins over a large range of site densities that are applicable for investigation of cell-materials interactions, including multi-parameter leukocyte flow studies. Future applications of this enabling methodology may lead to new insights into the biophysical phenomena and molecular mechanism underlying complex biological processes such as leukocyte recruitment and the inflammatory response.
doi:10.1039/c0ib00151a
PMCID: PMC3960975  PMID: 21614364
16.  Endothelial cell phenotypic behaviors cluster into dynamic state transition programs modulated by angiogenic and angiostatic cytokines 
Angiogenesis requires coordinated dynamic regulation of multiple phenotypic behaviors of endothelial cells in response to environmental cues. Multi-scale computational models of angiogenesis can be useful for analyzing effects of cell behaviors on the tissue level outcome, but these models require more intensive experimental studies dedicated to determining the required quantitative “rules” for cell-level phenotypic responses across a landscape of pro- and anti-angiogenic stimuli in order to ascertain how changes in these single cell responses lead to emerging multi-cellular behavior such as sprout formation. Here we employ single-cell microscopy to ascertain phenotypic behaviors of more than 800 human microvascular endothelial cells under various combinational angiogenic (VEGF) and angiostatic (PF4) cytokine treatments, analyzing their dynamic behavioral transitions among sessile, migratory, proliferative, and apoptotic states. We find that an endothelial cell population clusters into an identifiable set of a few distinct phenotypic state transition patterns (clusters) that is consistent across all cytokine conditions. Varying the cytokine conditions, such as VEGF and PF4 combinations here, modulates the proportion of the population following a particular pattern (referred to as phenotypic cluster weights) without altering the transition dynamics within the patterns. We then map the phenotypic cluster weights to quantified population level sprout densities using a multi-variate regression approach, and identify linear combinations of the phenotypic cluster weights that associate with greater or lesser sprout density across the various treatment conditions. VEGF-dominant cytokine combinations yielding high sprout densities are characterized by high proliferative and low apoptotic cluster weights, whereas PF4-dominant conditions yielding low sprout densities are characterized by low proliferative and high apoptotic cluster weights. Migratory cluster weights show only mild association with sprout density outcomes under the VEGF/PF4 conditions and the sprout formation characteristics explored here.
doi:10.1039/c2ib20090b
PMCID: PMC3581728  PMID: 23303249
angiogenesis; cell tracking; population heterogeneity; Markov models
17.  Convolution of chemoattractant secretion rate, source density, and receptor desensitization direct diverse migration patterns in leukocytes† 
Chemoattractants regulate diverse immunological, developmental, and pathological processes, but how cell migration patterns are shaped by attractant production in tissues remains incompletely understood. Using computational modeling and chemokine-releasing microspheres (CRMs), cell-sized attractant-releasing beads, we analyzed leukocyte migration in physiologic gradients of CCL21 or CCL19 produced by beads embedded in 3D collagen gels. Individual T-cells that migrated into contact with CRMs exhibited characteristic highly directional migration to attractant sources independent of their starting position in the gradient (and thus independent of initial gradient strength experienced) but the fraction of responding cells was highly sensitive to position in the gradient. These responses were consistent with modeling calculations assuming a threshold absolute difference in receptor occupancy across individual cells of ~10 receptors required to stimulate chemotaxis. In sustained gradients eliciting low receptor desensitization, attracted T-cells or dendritic cells swarmed around isolated CRMs for hours. With increasing CRM density, overlapping gradients and high attractant concentrations caused a transition from local swarming to transient “hopping” of cells bead to bead. Thus, diverse migration responses observed in vivo may be determined by chemoattractant source density and secretion rate, which govern receptor occupancy patterns in nearby cells.
doi:10.1039/c3ib20249f
PMCID: PMC3597436  PMID: 23392181
18.  Microfabricated collagen tracks facilitate single cell metastatic invasion in 3D 
While the mechanisms employed by metastatic cancer cells to migrate remain poorly understood, it has been widely accepted that metastatic cancer cells can invade the tumor stroma by degrading the extracellular matrix (ECM) with matrix metalloproteinases (MMPs). Although MMP inhibitors showed early promise in preventing metastasis in animal models, they have largely failed clinically. Recently, studies have shown that some cancer cells can use proteolysis to mechanically rearrange their ECM to form tube-like “microtracks” which other cells can follow without using MMPs themselves. We speculate that this mode of migration in the secondary cells may be one example of migration which can occur without endogenous protease activity in the secondary cells. Here we present a technique to study this migration in a 3D, collagen-based environment which mimics the size and topography of the tracks produced by proteolytically active cancer cells. Using time-lapse phase-contrast microscopy, we find that these microtracks permit the rapid and persistent migration of noninvasive MCF10A mammary epithelial cells, which are unable to otherwise migrate in 3D collagen. Additionally, while highly metastatic MDAMB231 breast cancer cells are able to invade a 3D collagen matrix, seeding within the patterned microtracks induced significantly increased cell migration speed, which was not decreased by pharmacological MMP inhibition. Together, these data suggest that microtracks within a 3D ECM may facilitate the migration of cells in an MMP-independent fashion, and may reveal novel insight into the clinical challenges facing MMP inhibitors.
doi:10.1039/c3ib20196a
PMCID: PMC3601578  PMID: 23388698
microtracks; micropatterning; collagen matrix; cancer metastasis; cell migration
19.  Enabling Screening in 3D Microenvironments: Probing Matrix and Stromal Effects on the Morphology and Proliferation of T47D Breast Carcinoma Cells 
During breast carcinoma progression, the three-dimensional (3D) microenvironment is continuously remodeled, and changes in the composition of the extracellular matrix (ECM) occur. High throughput screening platforms have been used to decipher the complexity of the microenvironment and to identify ECM components responsible for cancer progression. However, traditional screening platforms are typically limited to two-dimensional (2D) cultures, and often exclude the influence of ECM and stromal components. In this work, a system that integrates 3-dimensional cell culture techniques with an automated microfluidic platform was used to create a new ECM screening platform that cultures cells in more physiologically relevant 3D in vitro microenvironments containing stromal cells and different ECM molecules. This new ECM screening platform was used to culture T47D breast carcinoma cells in mono- and co-culture with human mammary fibroblasts (HMF) with seven combinations of three different ECM proteins (collagen, fibronectin, laminin). Differences in the morphology of T47D clusters, and the proliferation of T47D cells were found in ECM compositions rich in fibronectin or laminin. In addition, an MMP enzyme activity inhibition screening showed the capabilities of the platform for small molecule screening. The platform presented in this work enables screening for the effects of matrix and stromal compositions and show promises for providing new insights in the identification of key ECM components involved in breast cancer.
doi:10.1039/c3ib20225a
PMCID: PMC3613432  PMID: 23340769
20.  Retrotaxis of Human Neutrophils during Mechanical Confinement inside Microfluidic Channels 
The current paradigm of unidirectional migration of neutrophils from circulation to sites of injury in tissues has been recently challenged by observations in zebrafish showing that neutrophils can return from tissues back into the circulation. However, the relevance of these observations to human neutrophils remains unclear, the forward and reversed migration of neutrophils is difficult to quantify, and the precise conditions modulating the reverse migration cannot be isolated. Here, we designed a microfluidic platform inside which we observed human neutrophil migration in response to chemoattractant sources inside channels, simulating the biochemical and mechanical confinement conditions at sites of injury in tissues. We observed that, after initially following the direction of chemoattractant gradients, more than 90% of human neutrophils can reverse their direction and migrate persistently and for distances longer than one thousand micrometers micrometers away from chemoattractant sources (retrotaxis). Retrotaxis is enhanced in the presence of lipoxin A4 (LXA4), a well-established mediator of inflammation resolution, or Tempol, a standard antioxidant. Retrotaxis stops after neutrophils encounter targets which they phagocytise or on surfaces presenting high concentrations of fibronectin. Our microfluidic model suggests a new paradigm for neutrophil accumulation at sites of inflammation, which depends on the balance of three simultaneous processes: chemotaxis along diffusion gradients, retrotaxis following mechanical guides, and stopping triggered by phagocytosis.
doi:10.1039/c3ib40175h
PMCID: PMC3928968  PMID: 24419464
21.  Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D 
We describe the development of a well-based cell culture platform that enables experimenters to control the geometry and connectivity of cellular microenvironments spatiotemporally. The base material is a hydrogel comprised of photolabile and enzyme-labile crosslinks and pendant cell adhesion sequences, enabling spatially-specific, in situ patterning with light and cell-dictated microenvironment remodeling through enzyme secretion. Arrays of culture wells of varying shape and size were patterned into the hydrogel surface using photolithography, where well depth was correlated with irradiation dose. The geometry of these devices can be subsequently modified through sequential patterning, while simultaneously monitoring changes in cell geometry and connectivity. Towards establishing the utility of these devices for dynamic evaluation of the influence of physical cues on tissue morphogenesis, the effect of well shape on lung epithelial cell differentiation (i.e., primary mouse alveolar type II cells, ATII cells) was assessed. Shapes inspired by alveoli were degraded into hydrogel surfaces. ATII cells were seeded within the well-based arrays and encapsulated by the addition of a top hydrogel layer. Cell differentiation in response to these geometries was characterized over 7 days of culture with immunocytochemistry (surfactant protein C, ATII; T1α protein, alveolar type I (ATI) differentiated epithelial cells) and confocal image analysis. Individual cell clusters were further connected by eroding channels between wells during culture via controlled two-photon irradiation. Collectively, these studies demonstrate the development and utility of responsive hydrogel culture devices to study how a range of microenvironment geometries of evolving shape and connectivity might influence or direct cell function.
doi:10.1039/c2ib20212c
PMCID: PMC3928973  PMID: 23138879
22.  Modeling tumor growth and treatment response based on quantitative imaging data 
We review current approaches to predicting tumor growth and treatment response that combine non-invasive imaging data with mathematical models of cancer progression, and propose some new directions for integrating quantitative imaging measurements with such numerical analyses. Historically, tumor modeling has been described by parameters that are measurable by invasive methods only or in isolated in vitro or ex vivo systems. This limits the practical usefulness of such models because it is not possible to test their predictions experimentally. Recent advances in three-dimensional magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography techniques provide new opportunities to acquire measurements of relevant molecular and cellular features of tumors non-invasively and with high spatial resolution. Such data can be incorporated into mathematical models of tumors. We highlight some recent examples of this approach and identify several simple examples that allow for conventional mathematical models of tumor growth to be recast in terms of parameters that can be measured by imaging, thus raising the possibility of designing and constraining models that can be tested in clinical practice. It is our hope that this Perspective will stimulate further work in this evolving and exciting field.
doi:10.1039/b921497f
PMCID: PMC3919677  PMID: 20596581
23.  High-Resolution Molecular Imaging Via Intravital Microscopy: Illuminating Vascular Biology In Vivo 
Complications of atherosclerosis and thrombosis are leading causes of death worldwide. While experimental investigations have yielded valuable insights into key molecular and cellular phenomena in these diseases of medium- and large-sized vessels, direct visualization of relevant in vivo biological processes has been limited. However, recent developments in molecular imaging technology, specifically fluorescence imaging agents coupled with high-resolution, high-speed intravital microscopy (IVM), are now enabling dynamic and longitudinal investigations into the mechanisms and progression of many vascular diseases. Here we review recent advances in IVM that have provided new in vivo biological insights into atherosclerosis and thrombosis.
doi:10.1039/c2ib20194a
PMCID: PMC3558556  PMID: 23135362
24.  Determination of the Quaternary Structure of a Bacterial ATP-Binding Cassette (ABC) Transporter in Living Cells 
Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that affects patients with cystic fibrosis and immunocompromised individuals. This bacterium coexpresses two unique forms of lipopolysaccharides (LPSs) on its surface, the A- and B-band LPS, which are among the main virulence factors that contribute to its pathogenicity. The polysaccharides in A-band LPSs are synthesized in the cytoplasm and translocated into the periplasm via an ATP-binding-cassette (ABC) transporter consisting of a transmembrane protein, Wzm, and a cytoplasmic nucleotide-binding protein, Wzt. Most of the biochemical studies of A-band PSs in Pseudomonas aeruginosa are focused on the stages of the synthesis and ligation of PS, leaving the export stage involving the ABC transporter mostly unexplored. This difficulty is compounded by the fact that the subunit composition and structure of this bi-component ABC transporter are still unknown. Here we propose a simple but powerful method, based on Förster Resonance Energy Transfer (FRET) and optical micro-spectroscopy technology, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of the Wzm-Wzt complex in living cells. It is found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the structure and behavior of this ABC transporter will help develop antibiotics targeting the biosynthesis of the A-band LPS endotoxin.
doi:10.1039/c2ib20218b
PMCID: PMC3558595  PMID: 23223798
25.  Dynamic deformability of Plasmodium falciparum– infected erythrocytes exposed to artesunate in vitro 
Artesunate (ART) is widely used for the treatment of malaria, but the mechanisms of its effects on parasitized red blood cells (RBCs) are not fully understood. We investigated ART's influence on the dynamic deformability of red blood cells infected with ring-stage Plasmodium falciparum malaria (iRBCs) in order to elucidate its role in cellular mechanobiology. The dynamic deformability of red blood cells was measured by passing them through a microfluidic device with repeated bottleneck structures. The quasi-static deformability measurement was performed using micropipette aspiration. After ART treatment, microfluidic experiments showed 50% decrease in iRBC transit velocity whereas only small (~10%) velocity reduction was observed among uninfected RBCs (uRBCs). Micropipette aspiration also revealed ART-induced stiffening in RBC membranes. These results demonstrate, for the first time, that ART alters the dynamic and quasi-static red blood cell deformability, which may subsequently influence blood circulation through microvasculature and spleen cordal meshwork, thus adding a new aspect to artesunate's mechanism of action.
doi:10.1039/c2ib20161e
PMCID: PMC3615419  PMID: 23254624

Results 1-25 (141)