Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p 
Molecular Biology of the Cell  2013;24(13):2124-2133.
Binding and dephosphorylation of the yeast lipin Pah1p by its phosphatase Nem1p-Spo7p is essential for its membrane targeting and is mediated by a C-terminal acidic stretch on Pah1p. This results in the recruitment of Pah1p to the vicinity of lipid droplets, where it controls triglyceride and droplet biogenesis in an acidic tail–dependent manner.
Lipins are evolutionarily conserved phosphatidate phosphatases that perform key functions in phospholipid, triglyceride, and membrane biogenesis. Translocation of lipins on membranes requires their dephosphorylation by the Nem1p-Spo7p transmembrane phosphatase complex through a poorly understood mechanism. Here we identify the carboxy-terminal acidic tail of the yeast lipin Pah1p as an important regulator of this step. Deletion or mutations of the tail disrupt binding of Pah1p to the Nem1p-Spo7p complex and Pah1p membrane translocation. Overexpression of Nem1p-Spo7p drives the recruitment of Pah1p in the vicinity of lipid droplets in an acidic tail–dependent manner and induces lipid droplet biogenesis. Genetic analysis shows that the acidic tail is essential for the Nem1p-Spo7p–dependent activation of Pah1p but not for the function of Pah1p itself once it is dephosphorylated. Loss of the tail disrupts nuclear structure, INO1 gene expression, and triglyceride synthesis. Similar acidic sequences are present in the carboxy-terminal ends of all yeast lipin orthologues. We propose that acidic tail–dependent binding and dephosphorylation of Pah1p by the Nem1p-Spo7p complex is an important determinant of its function in lipid and membrane biogenesis.
PMCID: PMC3694796  PMID: 23657815
2.  A role for Atg8–PE deconjugation in autophagosome biogenesis 
Autophagy  2012;8(5):780-793.
Formation of the autophagosome is likely the most complex step of macroautophagy, and indeed it is the morphological and functional hallmark of this process; accordingly, it is critical to understand the corresponding molecular mechanism. Atg8 is the only known autophagy-related (Atg) protein required for autophagosome formation that remains associated with the completed sequestering vesicle. Approximately one-fourth of all of the characterized Atg proteins that participate in autophagosome biogenesis affect Atg8, regulating its conjugation to phosphatidylethanolamine (PE), localization to the phagophore assembly site and/or subsequent deconjugation. An unanswered question in the field regards the physiological role of the deconjugation of Atg8–PE. Using an Atg8 mutant that bypasses the initial Atg4-dependent processing, we demonstrate that Atg8 deconjugation is an important step required to facilitate multiple events during macroautophagy. The inability to deconjugate Atg8–PE results in the mislocalization of this protein to the vacuolar membrane. We also show that the deconjugation of Atg8–PE is required for efficient autophagosome biogenesis, the assembly of Atg9-containing tubulovesicular clusters into phagophores/autophagosomes, and for the disassembly of PAS-associated Atg components.
PMCID: PMC3378420  PMID: 22622160
3.  A dual role for K63-linked ubiquitin chains in multivesicular body biogenesis and cargo sorting 
Molecular Biology of the Cell  2012;23(11):2170-2183.
Many yeast and some mammalian multivesicular body (MVB) cargoes display modification by K63-linked ubiquitin chains (K63Ub), which are required for their efficient sorting. Yeast UBD-containing ESCRT proteins are modified by the ubiquitin ligase Rsp5—some likely by K63Ub. A failure to generate K63Ub in yeast leads to MVB ultrastructure alteration.
In yeast, the sorting of transmembrane proteins into the multivesicular body (MVB) internal vesicles requires their ubiquitylation by the ubiquitin ligase Rsp5. This allows their recognition by the ubiquitin-binding domains (UBDs) of several endosomal sorting complex required for transport (ESCRT) subunits. K63-linked ubiquitin (K63Ub) chains decorate several MVB cargoes, and accordingly we show that they localize prominently to the class E compartment, which accumulates ubiquitylated cargoes in cells lacking ESCRT components. Conversely, yeast cells unable to generate K63Ub chains displayed MVB sorting defects. These properties are conserved among eukaryotes, as the mammalian melanosomal MVB cargo MART-1 is modified by K63Ub chains and partly missorted when the genesis of these chains is inhibited. We show that all yeast UBD-containing ESCRT proteins undergo ubiquitylation and deubiquitylation, some being modified through the opposing activities of Rsp5 and the ubiquitin isopeptidase Ubp2, which are known to assemble and disassemble preferentially K63Ub chains, respectively. A failure to generate K63Ub chains in yeast leads to an MVB ultrastructure alteration. Our work thus unravels a double function of K63Ub chains in cargo sorting and MVB biogenesis.
PMCID: PMC3364180  PMID: 22493318
4.  The puzzling origin of the autophagosomal membrane 
Autophagy is one of the newest and fastest emerging research areas in biomedical life sciences. Autophagosomes, large double-membrane vesicles enclosing cytoplasmic components targeted for degradation, are the hallmark of this catabolic pathway. The origin of the lipid bilayers composing these transport carriers has been the central enigma of the field since the discovery of autophagy. A series of recent studies has implicated several cellular organelles as the possible source of the autophagosomal membranes, if anything further clouding our view. In this compendium, we will discuss these apparently contradictory results and briefly emphasize the relevance of determining the lipid source used for autophagy for future translational research, for example in drug discovery programs.
PMCID: PMC3229206  PMID: 22162728
5.  Phosphorylation of a membrane curvature–sensing motif switches function of the HOPS subunit Vps41 in membrane tethering 
The Journal of Cell Biology  2010;191(4):845-859.
An AP-3–binding site required for vesicle–vacuole fusion is masked when Vps41 is associated with highly curved membranes, such as endosomes, but is exposed at membranes with lower curvature, such as vacuoles, because of phosphorylation of the membrane-binding motif.
Tethering factors are organelle-specific multisubunit protein complexes that identify, along with Rab guanosine triphosphatases, transport vesicles and trigger their SNARE-mediated fusion of specific transport vesicles with the target membranes. Little is known about how tethering factors discriminate between different trafficking pathways, which may converge at the same organelle. In this paper, we describe a phosphorylation-based switch mechanism, which allows the homotypic vacuole fusion protein sorting effector subunit Vps41 to operate in two distinct fusion events, namely endosome–vacuole and AP-3 vesicle–vacuole fusion. Vps41 contains an amphipathic lipid-packing sensor (ALPS) motif, which recognizes highly curved membranes. At endosomes, this motif is inserted into the lipid bilayer and masks the binding motif for the δ subunit of the AP-3 complex, Apl5, without affecting the Vps41 function in endosome–vacuole fusion. At the much less curved vacuole, the ALPS motif becomes available for phosphorylation by the resident casein kinase Yck3. As a result, the Apl5-binding site is exposed and allows AP-3 vesicles to bind to Vps41, followed by specific fusion with the vacuolar membrane. This multifunctional tethering factor thus discriminates between trafficking routes by switching from a curvature-sensing to a coat recognition mode upon phosphorylation.
PMCID: PMC2983053  PMID: 21079247
6.  An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis 
The Journal of Cell Biology  2010;190(6):1005-1022.
A reservoir of Atg9-containing vesicles and tubules provides the initial membranes necessary for autophagophore formation in yeast.
Eukaryotes use the process of autophagy, in which structures targeted for lysosomal/vacuolar degradation are sequestered into double-membrane autophagosomes, in numerous physiological and pathological situations. The key questions in the field relate to the origin of the membranes as well as the precise nature of the rearrangements that lead to the formation of autophagosomes. We found that yeast Atg9 concentrates in a novel compartment comprising clusters of vesicles and tubules, which are derived from the secretory pathway and are often adjacent to mitochondria. We show that these clusters translocate en bloc next to the vacuole to form the phagophore assembly site (PAS), where they become the autophagosome precursor, the phagophore. In addition, genetic analyses indicate that Atg1, Atg13, and phosphatidylinositol-3-phosphate are involved in the further rearrangement of these initial membranes. Thus, our data reveal that the Atg9-positive compartments are important for the de novo formation of the PAS and the sequestering vesicle that are the hallmarks of autophagy.
PMCID: PMC3101592  PMID: 20855505
7.  The CORVET Subunit Vps8 Cooperates with the Rab5 Homolog Vps21 to Induce Clustering of Late Endosomal Compartments 
Molecular Biology of the Cell  2009;20(24):5276-5289.
Membrane tethering, the process of mediating the first contact between membranes destined for fusion, requires specialized multisubunit protein complexes and Rab GTPases. In the yeast endolysosomal system, the hexameric HOPS tethering complex cooperates with the Rab7 homolog Ypt7 to promote homotypic fusion at the vacuole, whereas the recently identified homologous CORVET complex acts at the level of late endosomes. Here, we have further functionally characterized the CORVET-specific subunit Vps8 and its relationship to the remaining subunits using an in vivo approach that allows the monitoring of late endosome biogenesis. In particular, our results indicate that Vps8 interacts and cooperates with the activated Rab5 homolog Vps21 to induce the clustering of late endosomal membranes, indicating that Vps8 is the effector subunit of the CORVET complex. This clustering, however, requires Vps3, Vps16, and Vps33 but not the remaining CORVET subunits. These data thus suggest that the CORVET complex is built of subunits with distinct activities and potentially, their sequential assembly could regulate tethering and successive fusion at the late endosomes.
PMCID: PMC2793301  PMID: 19828734
8.  Vps41 Phosphorylation and the Rab Ypt7 Control the Targeting of the HOPS Complex to Endosome–Vacuole Fusion Sites 
Molecular Biology of the Cell  2009;20(7):1937-1948.
Membrane fusion depends on multisubunit tethering factors such as the vacuolar HOPS complex. We previously showed that the vacuolar casein kinase Yck3 regulates vacuole biogenesis via phosphorylation of the HOPS subunit Vps41. Here, we link the identified Vps41 phosphorylation site to HOPS function at the endosome–vacuole fusion site. The nonphosphorylated Vps41 mutant (Vps41 S-A) accumulates together with other HOPS subunits on punctate structures proximal to the vacuole that expand in a class E mutant background and that correspond to in vivo fusion sites. Ultrastructural analysis of this mutant confirmed the presence of tubular endosomal structures close to the vacuole. In contrast, Vps41 with a phosphomimetic mutation (Vps41 S-D) is mislocalized and leads to multilobed vacuoles, indicative of a fusion defect. These two phenotypes can be rescued by overproduction of the vacuolar Rab Ypt7, revealing that both Ypt7 and Yck3-mediated phosphorylation modulate the Vps41 localization to the endosome–vacuole junction. Our data suggest that Vps41 phosphorylation fine-tunes the organization of vacuole fusion sites and provide evidence for a fusion “hot spot” on the vacuole limiting membrane.
PMCID: PMC2663929  PMID: 19193765
9.  Mouse Hepatitis Coronavirus RNA Replication Depends on GBF1-Mediated ARF1 Activation 
PLoS Pathogens  2008;4(6):e1000088.
Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected.
Author Summary
Coronaviruses are the causative agents of many respiratory and enteric infections in humans and animals. As with all viruses, virtually all of the steps of their infection cycle depend on host cellular factors. As the first and most crucial step after their entry into cells, coronaviruses assemble their replication complexes (RCs) in association with characteristic, newly induced membranous structures. The cellular pathways hijacked by these plus-strand RNA viruses to create these “factories” have not been elucidated. Here, we study the involvement of the secretory pathway in mouse hepatitis coronavirus (MHV) replication by using the drug brefeldin A (BFA), which is known to interfere with ER–Golgi membrane traffic by inhibiting the activation of ADP-ribosylation factor (ARF) small GTPases. Our observations show that MHV RNA replication is sensitive to BFA. In agreement herewith we demonstrate, by using various techniques, that the BFA-sensitive guanidine nucleotide exchange factor GBF1 and its downstream effector ARF1 are of critical importance for coronavirus replication. From our results we conclude that MHV RNA replication depends on GBF1-mediated ARF1 activation. Our study provides new insights into the close connection between MHV replication and the early secretory pathway.
PMCID: PMC2398782  PMID: 18551169
10.  Sorting by the Cytoplasmic Domain of the Amyloid Precursor Protein Binding Receptor SorLA▿ † 
Molecular and Cellular Biology  2007;27(19):6842-6851.
SorLA/LR11 (250 kDa) is the largest and most composite member of the Vps10p-domain receptors, a family of type 1 proteins preferentially expressed in neuronal tissue. SorLA binds several ligands, including neurotensin, platelet-derived growth factor-bb, and lipoprotein lipase, and via complex-formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Aβ-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its cytoplasmic tail mediates efficient Golgi body-endosome transport, as well as AP-2 complex-dependent endocytosis. Functional sorting sites were mapped to an acidic cluster-dileucine-like motif and to a GGA binding site in the C terminus. Experiments in permanently or transiently AP-1 μ1-chain-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are engaged in retraction of the receptor from endosomes.
PMCID: PMC2099242  PMID: 17646382

Results 1-10 (10)