PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Characterization of Mmp37p, a Saccharomyces cerevisiae Mitochondrial Matrix Protein with a Role in Mitochondrial Protein Import 
Molecular Biology of the Cell  2006;17(9):4051-4062.
Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix.
doi:10.1091/mbc.E06-04-0366
PMCID: PMC1556384  PMID: 16790493
2.  Spatial regulation of translation through RNA localization 
RNA localization is a mechanism to post-transcriptionally regulate gene expression. Eukaryotic organisms ranging from fungi to mammals localize mRNAs to spatially restrict synthesis of specific proteins to distinct regions of the cytoplasm. In this review, we provide a general summary of RNA localization pathways in Saccharomyces cerevisiae, Xenopus, Drosophila and mammalian neurons.
doi:10.3410/B4-16
PMCID: PMC3412389  PMID: 22912650
3.  She3p Possesses a Novel Activity Required for ASH1 mRNA Localization in Saccharomyces cerevisiae▿  
Eukaryotic Cell  2009;8(7):1072-1083.
Intracellular and intercellular polarity requires that specific proteins be sorted to discreet locations within and between cells. One mechanism for sorting proteins is through RNA localization. In Saccharomyces cerevisiae, ASH1 mRNA localizes to the distal tip of the bud, resulting in the asymmetric sorting of the transcriptional repressor Ash1p. ASH1 mRNA localization requires four cis-acting localization elements and the trans-acting factors Myo4p, She3p, and She2p. Myo4p is a type V myosin motor that functions to directly transport ASH1 mRNA to the bud. She2p is an RNA-binding protein that directly interacts with the ASH1 mRNA cis-acting elements. Currently, the role for She3p in ASH1 mRNA localization is as an adaptor protein, since it can simultaneously associate with Myo4p and She2p. Here, we present data for two novel mutants of She3p, S348E and the double mutant S343E S361E, that are defective for ASH1 mRNA localization, and yet both of these mutants retain the ability to associate with Myo4p and She2p. These observations suggest that She3p possesses a novel activity required for ASH1 mRNA localization, and our data imply that this function is related to the ability of She3p to associate with ASH1 mRNA. Interestingly, we determined that She3p is phosphorylated, and global mass spectrometry approaches have determined that Ser 343, 348, and 361 are sites of phosphorylation, suggesting that the novel function for She3p could be negatively regulated by phosphorylation. The present study reveals that the current accepted model for ASH1 mRNA localization does not fully account for the function of She3p in ASH1 mRNA localization.
doi:10.1128/EC.00084-09
PMCID: PMC2708451  PMID: 19429778
4.  An Exclusively Nuclear RNA-Binding Protein Affects Asymmetric Localization of ASH1 mRNA and Ash1p in Yeast 
The Journal of Cell Biology  2001;153(2):307-318.
The localization of ASH1 mRNA to the distal tip of budding yeast cells is essential for the proper regulation of mating type switching in Saccharomyces cerevisiae. A localization element that is predominantly in the 3′-untranslated region (UTR) can direct this mRNA to the bud. Using this element in the three-hybrid in vivo RNA-binding assay, we identified a protein, Loc1p, that binds in vitro directly to the wild-type ASH1 3′-UTR RNA, but not to a mutant RNA incapable of localizing to the bud nor to several other mRNAs. LOC1 codes for a novel protein that recognizes double-stranded RNA structures and is required for efficient localization of ASH1 mRNA. Accordingly, Ash1p gets symmetrically distributed between daughter and mother cells in a loc1 strain. Surprisingly, Loc1p was found to be strictly nuclear, unlike other known RNA-binding proteins involved in mRNA localization which shuttle between the nucleus and the cytoplasm. We propose that efficient cytoplasmic ASH1 mRNA localization requires a previous interaction with specific nuclear factors.
PMCID: PMC2169461  PMID: 11309412
ASH1; RNA localization; yeast; nuclear RNA-binding protein; three-hybrid

Results 1-4 (4)