PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (61)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Romidepsin in Peripheral and Cutaneous T-Cell Lymphoma: Mechanistic Implications from Clinical and Correlative Data 
British journal of haematology  2015;170(1):96-109.
Summary
Romidepsin is an epigenetic agent approved for the treatment of patients with cutaneous or peripheral T-cell lymphoma (CTCL and PTCL). Here we report data in all patients treated on the National Cancer Institute 1312 trial, demonstrating long-term disease control and the ability to retreat patients relapsing off-therapy. In all, 84 patients with CTCL and 47 with PTCL were enrolled. Responses occurred early, were clinically meaningful and of very long duration in some cases. Notably, patients with PTCL receiving romidepsin as third-line therapy or later had a comparable response rate (32%) of similar duration as the total population (38%). Eight patients had treatment breaks of 3.5 months to 10 years; in four of six patients, re-initiation of treatment led to disease regression. Safety data show slightly greater haematological and constitutional toxicity in PTCL. cDNA microarray studies show unique individual gene expression profiles, minimal overlap between patients, and both induction and repression of gene expression that reversed within 24 h. These data argue against cell death occurring as a result of an epigenetics-mediated gene induction programme. Together this work supports the safety and activity of romidepsin in T-cell lymphoma, but suggests a complex mechanism of action.
doi:10.1111/bjh.13400
PMCID: PMC4675455  PMID: 25891346
Epigenetic therapy; HDAC inhibitor; Romidepsin; T-cell lymphoma; Chromatin
3.  Targeting Prolactin Receptor (PRLR) Signaling in PRLR-Positive Breast and Prostate Cancer 
The Oncologist  2016;21(5):523-526.
In this issue of The Oncologist, Agarwal et al. report negative results from a phase I trial of LFA102. Although “negative” in terms of antitumor activity, the study provides useful pharmacokinetic and pharmacodynamic information. Future trials evaluating PRLR blockers alone and in combination with other agents may still be warranted in patients with breast and prostate cancer.
doi:10.1634/theoncologist.2016-0108
PMCID: PMC4861375  PMID: 27107001
4.  Tumor Growth Rates Derived from Data for Patients in a Clinical Trial Correlate Strongly with Patient Survival: A Novel Strategy for Evaluation of Clinical Trial Data 
The Oncologist  2008;13(10):1046-1054.
Purpose
The slow progress in developing new cancer therapies can be attributed in part to the long time spent in clinical development. To hasten development, new paradigms especially applicable to patients with metastatic disease are needed.
Patients and Methods
We present a new method to predict survival using tumor measurement data gathered while a patient with cancer is receiving therapy in a clinical trial. We developed a two-phase equation to estimate the concomitant rates of tumor regression (regression rate constant d) and tumor growth (growth rate constant g).
Results
We evaluated the model against serial levels of prostate-specific antigen (PSA) in 112 patients undergoing treatment for prostate cancer. Survival was strongly correlated with the log of the growth rate constant, log(g) (Pearson r=−0.72) but not with the log of the regression rate constants, log(d)(r=−0.218). Values of log(g) exhibited a bimodal distribution. Patients with log(g) values above the median had a mortality hazard of 5.14 (95% confidence interval, 3.10–8.52) when compared with those with log(g) values below the median. Mathematically, the minimum PSA value (nadir) and the time to this minimum are determined by the kinetic parameters d and g, and can be viewed as surrogates.
Conclusions
This mathematical model has applications to many tumor types and may aid in evaluating patient outcomes. Modeling tumor progression using data gathered while patients are on study, may help evaluate the ability of therapies to prolong survival and assist in drug development.
doi:10.1634/theoncologist.2008-0075
PMCID: PMC3313464  PMID: 18838440
5.  Bevacizumab Reduces the Growth Rate Constants of Renal Carcinomas: A Novel Algorithm Suggests Early Discontinuation of Bevacizumab Resulted in a Lack of Survival Advantage 
The Oncologist  2008;13(10):1055-1062.
Background
To hasten cancer drug development, new paradigms are needed to assess therapeutic efficacy. In a randomized phase II study in patients with renal cell carcinoma, 10 μg/kg bevacizumab (Avastin®; Genentech, Inc., South San Francisco, CA) administered every 2 weeks resulted in a longer time to progression but a statistically significant difference in overall survival could not be demonstrated.
Methods
We developed a novel two-phase equation to estimate concomitant rates of tumor regression (regression rate constant) and tumor growth (growth rate constant). This method allows us to assess therapeutic efficacy using tumor measurements gathered while a patient receives therapy in a clinical trial.
Results
The growth rate constants of renal cell carcinomas were significantly lower during therapy with 10 μg/kg bevacizumab than those of tumors in patients receiving placebo. In all cohorts the tumor growth rate constants were correlated with survival. That a survival advantage was not demonstrated with bevacizumab appears to have been a result of early discontinuation of bevacizumab.
Conclusions
Single-agent bevacizumab significantly affects the growth rate constants of renal cell carcinoma. Extrapolating from the growth rate constants, we conclude that the failure to demonstrate a survival advantage in the original study was a result of premature discontinuation of bevacizumab. The mathematical model described herein has applications to many tumor types and should aid in evaluating the relative efficacies of different therapies. Quantitating tumor growth rate constants using data gathered while patients are enrolled in a clinical trial, as in the present study, may streamline and assist in drug development.
doi:10.1634/theoncologist.2008-0016
PMCID: PMC3306833  PMID: 18827177
Bevacizumab; Chemotherapy efficacy; Clear-cell carcinoma; Drug efficacy; Growth rate constant; Premature discontinuation; RECIST; Renal cell carcinoma; Tumor assessment; Tumor measurements
6.  Histone deacetylase inhibitor-mediated cell death is distinct from its global effect on chromatin 
Molecular oncology  2014;8(8):1379-1392.
Romidepsin and vorinostat are histone deacetylase inhibitors (HDACis) that have activity in T-cell lymphomas, but have not gained traction in solid tumors. To gain deeper insight into mechanisms of HDACi efficacy, we systematically surveyed nineteen cell lines with different molecular phenotypes, comparing romidepsin and vorinostat at equipotent doses. Acetylation at H3K9 and H4K8 along with 22 other histone lysine acetylation and methylation modifications were measured by reverse phase proteomics array (RPPA), and compared with growth inhibition (IC50), and cell cycle arrest. These assays typically used to assess HDACi effect showed that acetylation and methylation of specific lysine residues in response to HDACis was consistent across cell lines, and not related to drug sensitivity. Using a treatment duration more reflective of the clinical exposure, cell death detected by annexin staining following a 6 hour drug exposure identified a subset of cell lines, including the T-cell lymphoma line, that was markedly more sensitive to HDAC inhibition. Kinetic parameters (Km values) were determined for lysine acetylation and for cell cycle data and were themselves correlated following HDACi exposure, but neither parameter correlated with cell death. The impact on cell survival signaling varied with the molecular phenotype. This study suggests that cellular response to HDACis can be viewed as two distinct effects: a chromatin effect and a cell death effect. All cells undergo acetylation, which is necessary but not sufficient for cell death. Cells not primed for apoptosis will not respond with cell death to the impact of altered histone acetylation. The divergent apoptotic responses observed reflect the variable clinical outcome of HDACi treatment. These observations should change our approach to the development of therapeutic strategies that exploit the dual activities of HDACis.
doi:10.1016/j.molonc.2014.05.001
PMCID: PMC4646083  PMID: 24954856
HDAC inhibitors; Cell context; Cell cycle arrest; Histone modification; Apoptosis
7.  Central Nervous System Metastasis From Breast Cancer 
The Oncologist  2014;20(1):3-4.
The development of new treatment options for central nervous system metastases from breast cancer and from other solid tumors lags far behind progress in other areas of oncology. Despite this lag, a series of paradigm shifts have made it possible to renew our efforts to make progress.
doi:10.1634/theoncologist.2014-0469
PMCID: PMC4294618  PMID: 25542449
8.  Phase I Trial of a New Schedule of Romidepsin in Patients with Advanced Cancers 
Purpose
Romidepsin is a potent histone deacetylase inhibitor (HDI) with activity in T-cell lymphoma. Given preclinical data demonstrating greater induction of gene expression with longer exposures to HDIs, a phase I study of a days 1, 3, and 5 romidepsin schedule was evaluated. A secondary objective was to assess the effect of romidepsin on radioactive iodine (RAI) uptake in thyroid cancers.
Experimental Design
Open label, single arm, phase I, 3 + 3 dose escalation study. Romidepsin was administered as a four-hour infusion on days 1, 3 and 5 of a 21-day cycle. Pharmacokinetics (PK) and pharmacodynamics (PD) were assessed, including histone acetylation in peripheral blood mononuclear cells (PBMCs); RAI uptake in refractory thyroid cancer; and HDI-related ECG changes.
Results
28 patients with solid tumors, including eleven patients with thyroid cancer were enrolled. Six dose levels were explored and 7 mg/m2 on days 1, 3, and 5 was identified as tolerable. No RECIST-defined objective responses were recorded although nine patients had stable disease a median 30 weeks (range 21 – 112) including six with thyroid cancer a median of 33 weeks. PD studies detected acetylated histones in PBMCs and ECG changes beginning at low dose levels. Follow-up RAI scans in patients with RAI refractory thyroid cancer did not detect meaningful increases.
Conclusions
A romidepsin dose of 7 mg/m2 administered on days 1, 3, and 5 was found tolerable and resulted in histone acetylation in PBMCs. Although there were no objective responses with romidepsin alone, this schedule may be useful for developing combination studies in solid tumors.
doi:10.1158/1078-0432.CCR-13-0095
PMCID: PMC3967244  PMID: 23757352
phase I clinical trial; romidepsin; histone deacetylase inhibitor; cancer
9.  A Phase I Study of DMS612, a Novel Bi-functional Alkylating Agent 
Purpose
DMS612 is a dimethane sulfonate analog with bifunctional alkylating activity and preferential cytotoxicity to human renal cell carcinoma (RCC) in the NCI-60 cell panel. This first-in-human phase I study aimed to determine dose-limiting toxicity (DLT), maximum tolerated dose (MTD), pharmacokinetics (PK), and pharmacodynamics (PD) of DMS612 administered by 10-min intravenous infusion on days 1, 8, and 15 of an every 28-day schedule.
Experimental Design
Patients with advanced solid malignancies were eligible. Enrollment followed a 3+3 design. Pharmacokinetics of DMS612 and metabolites were assessed by mass spectroscopy and pharmacodynamics by γ-H2AX immunofluorescence.
Results
A total of 31 patients with colorectal (11), RCC (4), cervical (2), and urothelial (1) cancers were enrolled. Six dose levels were studied, from 1.5 mg/m2 to 12 mg/m2. DLTs of grade 4 neutropenia and prolonged grade 3 thrombocytopenia were observed at 12 mg/m2. The MTD was determined to be 9 mg/m2 with a single DLT of grade 4 thrombocytopenia in 1 of 12 patients. Two patients had a confirmed partial response at the 9 mg/m2 dose level, in renal (1) and cervical (1) cancer. DMS612 was rapidly converted into active metabolites. γ-H2AX immunofluorescence revealed dose-dependent DNA damage in both peripheral blood lymphocytes and scalp hairs.
Conclusions
The MTD of DMS12 on days 1, 8, and 15 every 28 days was 9 mg/m2. DMS612 appears to be an alkylating agent with unique tissue specificities. Dose-dependent pharmacodynamic signals and 2 partial responses at the MTD support further evaluation of DMS612 in phase II trials.
doi:10.1158/1078-0432.CCR-14-1333
PMCID: PMC4755291  PMID: 25467180
Phase I; Pharmacokinetics; Pharmacodynamics; Alkylating agent
10.  A Pharmacodynamic Study of the P-glycoprotein Antagonist CBT-1® in Combination With Paclitaxel in Solid Tumors 
The Oncologist  2012;17(4):512.
Background:
This pharmacodynamic trial evaluated the effect of CBT-1® on efflux by the ATP binding cassette (ABC) multidrug transporter P-glycoprotein (Pgp/MDR1/ABCB1) in normal human cells and tissues. CBT-1® is an orally administered bisbenzylisoquinoline Pgp inhibitor being evaluated clinically. Laboratory studies showed potent and durable inhibition of Pgp, and in phase I studies CBT-1® did not alter the pharmacokinetics of paclitaxel or doxorubicin.
Methods:
CBT-1® was dosed at 500 mg/m2 for 7 days; a 3-hour infusion of paclitaxel at 135 mg/m2 was administered on day 6. Peripheral blood mononuclear cells (PBMCs) were obtained prior to CBT-1® administration and on day 6 prior to the paclitaxel infusion. 99mTc-sestamibi imaging was performed on the same schedule. The area under the concentration–time curve from 0–3 hours (AUC0–3) was determined for 99mTc-sestamibi.
Results:
Twelve patients were planned and enrolled. Toxicities were minimal and related to paclitaxel (grade 3 or 4 neutropenia in 18% of cycles). Rhodamine efflux from CD56+ PBMCs was a statistically significant 51%–100% lower (p < .0001) with CBT-1®. Among 10 patients who completed imaging, the 99mTc-sestamibi AUC0–3 for liver (normalized to the AUC0–3 of the heart) increased from 34.7% to 100.8% (median, 71.9%; p < .0001) after CBT-1® administration. Lung uptake was not changed.
Conclusion:
CBT-1® is able to inhibit Pgp-mediated efflux from PBMCs and normal liver to a degree observed with Pgp inhibitors studied in earlier clinical trials. Combined with its ease of administration and lack of toxicity, the data showing inhibition of normal tissue Pgp support further studies with CBT-1® to evaluate its ability to modulate drug uptake in tumor tissue.
Discussion:
Although overexpression of ABCB1 and other ABC transporters has been linked with poor outcome following chemotherapy efforts to negate that through pharmacologic inhibition have generally failed. This is thought to be a result of several factors, including (a) failure to select patients with tumors in which ABCB1 is a dominant resistance mechanism; (b) inhibitors that were not potent, or that impaired drug clearance; and (c) the existence of other mechanisms of drug resistance, including other ABC transporters. Although an animal model for Pgp has been lacking, recent studies have exploited a Brca1−/−; p53−/− mouse model of hereditary breast cancer that develops sporadic tumors similar to cancers in women harboring BRCA1 mutations. Treatment with doxorubicin, docetaxel, or the poly(ADP-ribose) polymerase inhibitor olaparib brings about shrinkage, but resistance eventually emerges. Overexpression of the Abcb1a gene, the mouse ortholog of human ABCB1, has been shown to be a mechanism of resistance in a subset of these tumors. Treating mice with resistant tumors with olaparib plus the Pgp inhibitor tariquidar resensitized the tumors to olaparib. Although results in this animal model support a new look at Pgp as a target, in this era of “targeted therapies,” trial designs that directly assess modulation of drug uptake, including quantitative nuclear imaging, should be pursued before clinical efficacy assessments are undertaken. Such assessment should be performed with compounds that inhibit tissue Pgp without altering the pharmacokinetics of chemotherapeutic agents. This pharmacodynamic study demonstrated that CBT-1®, inhibits Pgp-mediated efflux from PBMCs and normal liver.
doi:10.1634/theoncologist.2012-0080
PMCID: PMC3336838  PMID: 22416063
11.  Histone Deacetylase Inhibitors Influence Chemotherapy Transport by Modulating Expression and Trafficking of a Common Polymorphic Variant of the ABCG2 Efflux Transporter 
Cancer research  2012;72(14):3642-3651.
Histone deacetylase inhibitors (HDI) have exhibited some efficacy in clinical trials, but it is clear that their most effective applications have yet to be fully determined. In this study, we show that HDIs influence the expression of a common polymorphic variant of the chemotherapy drug efflux transporter ABCG2, which contributes to normal tissue protection. As one of the most frequent variants in human ABCG2, the polymorphism Q141K impairs expression, localization, and function, thereby reducing drug clearance and increasing chemotherapy toxicity. Mechanistic investigations revealed that the ABCG2 Q141K variant was fully processed but retained in the aggresome, a perinuclear structure, where misfolded proteins aggregate. In screening for compounds that could correct its expression, localization, and function, we found that the microtubule-disrupting agent colchicine could induce relocalization of the variant from the aggresome to the cell surface. More strikingly, we found that HDIs could produce a similar effect but also restore protein expression to wild-type levels, yielding a restoration of ABCG2-mediated specific drug efflux activity. Notably, HDIs did not modify aggresome structures but instead rescued newly synthesized protein and prevented aggresome targeting, suggesting that HDIs disturbed trafficking along microtubules by eliciting changes in motor protein expression. Together, these results showed how HDIs are able to restore wild-type functions of the common Q141K polymorphic isoform of ABCG2. More broadly, our findings expand the potential uses of HDIs in the clinic.
doi:10.1158/0008-5472.CAN-11-2008
PMCID: PMC4163836  PMID: 22472121
14.  Clinical Trial Results: Sharing Results, Speeding Discoveries 
The Oncologist  2013;18(7):779.
doi:10.1634/theoncologist.2013-0247
PMCID: PMC3720628  PMID: 23882019
15.  Clinical Trial Results: A Clinical Trial Bazaar! 
The Oncologist  2014;19(4):313-314.
The Oncologist’s Clinical Trial Results section welcomes both positive and negative results in an effort to share information, speed discovery, and inform the field. Clinical Trial Results submissions have shown how succinctly the salient features of a submission can be presented, with more in-depth information to be found online.
doi:10.1634/theoncologist.2014-0091
PMCID: PMC3983835  PMID: 24668329
16.  Histone deacetylase inhibitors modulate KATP subunit transcription in HL-1 cardiomyocytes through effects on cholesterol homeostasis 
Histone deacetylase inhibitors (HDIs) are under investigation for the treatment of a number of human health problems. HDIs have proven therapeutic value in refractory cases of cutaneous T-cell lymphoma. Electrocardiographic ST segment morphological changes associated with HDIs were observed during development. Because ST segment morphology is typically linked to changes in ATP sensitive potassium (KATP) channel activity, we tested the hypothesis that HDIs affect cardiac KATP channel subunit expression. Two different HDIs, romidepsin and trichostatin A, caused ~20-fold increase in SUR2 (Abcc9) subunit mRNA expression in HL-1 cardiomyocytes. The effect was specific for the SUR2 subunit as neither compound causes a marked change in SUR1 (Abcc8) expression. Moreover, the effect was cell specific as neither HDI markedly altered KATP subunit expression in MIN6 pancreatic β-cells. We observe significant enrichment of the H3K9Ac histone mark specifically at the SUR2 promoter consistent with the conclusion that chromatin remodeling at this locus plays a role in increasing SUR2 gene expression. Unexpectedly, however, we also discovered that HDI-dependent depletion of cellular cholesterol is required for the observed effects on SUR2 expression. Taken together, the data in the present study demonstrate that KATP subunit expression can be epigenetically regulated in cardiomyocytes, defines a role for cholesterol homeostasis in mediating epigenetic regulation and suggests a potential molecular basis for the cardiac effects of the HDIs.
doi:10.3389/fphar.2015.00168
PMCID: PMC4534802  PMID: 26321954
epigenetics; Abcc8; Abcc9; romidepsin; cholesterol; SREBP
17.  Targeting the Epigenome in Lung Cancer: Expanding Approaches to Epigenetic Therapy 
Frontiers in Oncology  2013;3:261.
Epigenetic aberrations offer dynamic and reversible targets for cancer therapy; increasingly, alteration via overexpression, mutation, or rearrangement is found in genes that control the epigenome. Such alterations suggest a fundamental role in carcinogenesis. Here, we consider three epigenetic mechanisms: DNA methylation, histone tail modification and non-coding, microRNA regulation. Evidence for each of these in lung cancer origin or progression has been gathered, along with evidence that epigenetic alterations might be useful in early detection. DNA hypermethylation of tumor suppressor promoters has been observed, along with global hypomethylation and hypoacetylation, suggesting an important role for tumor suppressor gene silencing. These features have been linked as prognostic markers with poor outcome in lung cancer. Several lines of evidence have also suggested a role for miRNA in carcinogenesis and in outcome. Cigarette smoke downregulates miR-487b, which targets both RAS and MYC; RAS is also a target of miR-let-7, again downregulated in lung cancer. Together the evidence implicates epigenetic aberration in lung cancer and suggests that targeting these aberrations should be carefully explored. To date, DNA methyltransferase and histone deacetylase inhibitors have had minimal clinical activity. Explanations include the possibility that the agents are not sufficiently potent to invoke epigenetic reversion to a more normal state; that insufficient time elapses in most clinical trials to observe true epigenetic reversion; and that doses often used may provoke off-target effects such as DNA damage that prevent epigenetic reversion. Combinations of epigenetic therapies may address those problems. When epigenetic agents are used in combination with chemotherapy or targeted therapy it is hoped that downstream biological effects will provoke synergistic cytotoxicity. This review evaluates the challenges of exploiting the epigenome in the treatment of lung cancer.
doi:10.3389/fonc.2013.00261
PMCID: PMC3793201  PMID: 24130964
epigenetics; non-small cell lung cancer; small-cell lung cancer; DNA methylation; histone modification; microRNA
18.  Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance 
Cancer research  2011;71(8):3029-3041.
Sildenafil is a potent and selective inhibitor of the type 5 cGMP-specific phosphodiesterase that is used clinically to treat erectile dysfunction and pulmonary arterial hypertension. Here we report that sildenafil has differential effects on cell surface ABC transporters such as ABCB1, ABCC1 and ABCG2 that modulate intracompartmental and intracellular concentrations of chemotherapeutic drugs. In ABCB1-overexpressing cells, non-toxic doses of sildenafil inhibited resistance and increased the effective intracellular concentration of ABCB1 substrate drugs, such as paclitaxel. Similarly, in ABCG2-overexpressing cells, sildenafil inhibited resistance to ABCG2 substrate anticancer drugs, for example, increasing the effective intracellular concentration of mitoxantrone or the fluorescent compound BODIPY-prazosin. Sildenafil also moderately inhibited the transport of E217βG and methotrexate by the ABCG2 transporter. Mechanistic investigations revealed that sildenafil stimulated ABCB1 ATPase activity and inhibited photolabeling of ABCB1 with [125I]-IAAP, whereas it only slightly stimulated ABCG2 ATPase activity and inhibited photolabeling of ABCG2 with [125I]-IAAP. In contrast, Sildenafil did not alter the sensitivity of parental, ABCB1- or ABCG2-overexpressing cells to non-ABCB1 and non-ABCG2 substrate drugs, nor did sildenafil affect the function of another ABC drug transporter ABCC1. Homology modeling predicted the binding conformation of sildenafil within the large cavity of the transmembrane region of ABCB1. Overall, we found that sildenafil inhibits the transporter function of ABCB1 and ABCG2, with a stronger effect on ABCB1. Our findings suggest a possible strategy to enhance the distribution and potentially the activity of anti-cancer drugs by jointly using a clinically approved drug with known side effects and drug-drug interactions.
doi:10.1158/0008-5472.CAN-10-3820
PMCID: PMC3078184  PMID: 21402712
Sildenafil; multidrug resistance; ABCB1; ABCG2; chemosensitivity
19.  The Challenge of Exploiting ABCG2 in the Clinic 
ABCG2, or breast cancer resistance protein (BCRP), is an ATP-binding cassette half transporter that has been shown to transport a wide range of substrates including chemotherapeutics, antivirals, antibiotics and flavonoids. Given its wide range of substrates, much work has been dedicated to developing ABCG2 as a clinical target. But where can we intervene clinically and how can we avoid the mistakes made in past clinical trials targeting P-glycoprotein? This review will summarize the normal tissue distribution, cancer tissue expression, substrates and inhibitors of ABCG2, and highlight the challenges presented in exploiting ABCG2 in the clinic. We discuss the possibility of inhibiting ABCG2, so as to increase oral bioavailability or increase drug penetration into sanctuary sites, especially the central nervous system; and at the other end of the spectrum, the possibility of improving ABCG2 function, in the case of gout caused by a single nucleotide polymphism. Together, these aspects of ABCG2/BCRP make the protein a target of continuing interest for oncologists, biologists, and pharmacologists.
PMCID: PMC3091815  PMID: 21118093
ABCG2/BCRP; Blood Brain Barrier; CNS Penetration; Drug Resistance; Gout; Oral Bioavailability; Q141K; Single nucleotide polymorphism
20.  A Pharmacodynamic Study of Docetaxel in Combination with the P-glycoprotein Antagonist, Tariquidar (XR9576) in Patients with Lung, Ovarian, and Cervical Cancer 
Purpose
P-glycoprotein (Pgp) antagonists have been difficult to develop because of complex pharmacokinetic interactions and a failure to demonstrate meaningful results. Here we report the results of a pharmacokinetic and pharmacodynamic trial using a third generation, potent, non-competitive inhibitor of Pgp, tariquidar (XR9576), in combination with docetaxel.
Experimental Design
In the first treatment cycle, the pharmacokinetics of docetaxel (40 mg/m2) were evaluated after day 1 and day 8 doses, which were administered with or without tariquidar (150 mg). 99mTc-sestamibi scanning and CD56+ mononuclear cell rhodamine efflux assays were performed to assess Pgp inhibition. In subsequent cycles, 75 mg/m2 docetaxel was administered with 150 mg tariquidar every three weeks.
Results
Forty-eight patients were enrolled onto the trial. Non-hematologic grade 3/4 toxicities in 235 cycles were minimal. Tariquidar inhibited Pgp-mediated rhodamine efflux from CD56+ cells and reduced 99mTc-sestamibi clearance from the liver. A 12 to 24% increase in sestamibi uptake in visible lesions was noted in 8 of 10 patients with lung cancer. No significant difference in docetaxel disposition was observed in pairwise comparison with and without tariquidar. Four PRs were seen (4/48); three in the non-small cell lung cancer (NSCLC) cohort, measuring 40%, 57% and 67% by RECIST and one PR in a patient with ovarian cancer.
Conclusions
Tariquidar is well-tolerated with less observed systemic pharmacokinetic interaction than previous Pgp antagonists. Variable effects of tariquidar on retention of sestamibi in imageable lung cancers suggest that follow-up studies assessing tumor drug uptake in this patient population would be worthwhile.
doi:10.1158/1078-0432.CCR-10-1725
PMCID: PMC3071989  PMID: 21081657
P-glycoprotein; ABC transporter; drug resistance; sestamibi imaging; lung cancer
21.  ABC Transporters: Unvalidated Therapeutic Targets in Cancer and the CNS 
The discovery of the multidrug transporter P-glycoprotein (Pgp) over 35 years ago in drug resistant cells prompted several decades of work attempting to overcome drug resistance by inhibition of drug efflux. Despite convincing laboratory data showing that drug transport can be inhibited in vitro, efforts to translate this discovery to the clinic have not succeeded. Since overexpression of Pgp and related transporters including ABCG2 and members of the ABCC family have been linked with poor outcome, it remains a reasonable hypothesis that this poor outcome is linked to reduction of drug exposure by efflux, and thus to drug resistance. In this review, we will discuss the question of whether ABC transporters mediate drug resistance in cancer through a reduction in drug accumulation in tumors, and whether the “Pgp inhibition hypothesis” might be wrong. The hypothesis, which holds that increased chemotherapy effectiveness can be achieved by inhibiting Pgp-mediated drug efflux has only been validated in model systems. Possible explanations for the failure to validate this clinically include the existence of other modulators of drug accumulation and uptake in tumors. Despite these difficulties, a potential role has emerged for drug transporters as therapeutic targets in the central nervous system (CNS). Both lines of investigation point to the need for imaging agents to facilitate the study of drug accumulation in human cancer. This is a critical need for targeted therapies where an important dose-response relationship is likely to exist, and where drug resistance renders many of the novel targeted agents ineffective in a subset of patients.
PMCID: PMC3119022  PMID: 21189132
ABC transporters; drug resistance; P-glycoprotein
22.  ABCG2: A Perspective 
ABCG2, or Breast Cancer Resistance Protein (BCRP), is an ABC transporter that has been the subject of intense study since its discovery a decade ago. With high normal tissue expression in the brain endothelium, gastrointestinal tract, and placenta, ABCG2 is believed to be important in protection from xenobiotics, regulating oral bioavailability, forming part of the blood-brain barrier, the blood-testis barrier, and the maternal-fetal barrier. Notably, ABCG2 is often expressed in stem cell populations, where it likely plays a role in xenobiotic protection. However, clues to its epigenetic regulation in various cell populations are only beginning to emerge. While ABCG2 overexpression has been demonstrated in cancer cells after in vitro drug treatment, endogenous ABCG2 expression in certain cancers is likely a reflection of the differentiated phenotype of the cell of origin and likely contributes to intrinsic drug resistance. Notably, research into the transporter’s role in cancer drug resistance and its development as a therapeutic target in cancer has lagged. Substrates and inhibitors of the transporter have been described, among them chemotherapy drugs, tyrosine kinase inhibitors, antivirals, HMG-CoA reductase inhibitors, carcinogens, and flavonoids. This broad range of substrates complements the efficiency of ABCG2 as a transporter in laboratory studies and suggests that, while there are redundant mechanisms of xenobiotic protection, the protein is important in normal physiology. Indeed, emerging studies in pharmacology and toxicology assessing polymorphic variants in man, in combination with murine knockout models have confirmed its dynamic role. Work in pharmacology may eventually lead us to a greater understanding of the physiologic role of ABCG2.
doi:10.1016/j.addr.2008.11.003
PMCID: PMC3105088  PMID: 19135109
ABCG2; BCRP; drug-resistance; ABC transporter; chemotherapy; pharmacology
23.  Laboratory Correlates for a Phase II Trial of Romidepsin in Cutaneous and Peripheral T-Cell Lymphoma 
British journal of haematology  2009;148(2):256-267.
SUMMARY
Since romidepsin has shown promise in the treatment of T-cell lymphomas, we evaluated molecular endpoints gathered from 61 patients enrolled on a phase II trial of romidepsin in cutaneous and peripheral T-cell lymphoma at the National Institutes of Health. The endpoints included histone H3 acetylation and ABCB1 gene expression in peripheral blood mononuclear cells (PBMCs); ABCB1 gene expression in tumor biopsy samples; and blood fetal hemoglobin levels (HbF), all of which were increased following romidepsin treatment. The fold increase in histone acetylation in PBMCs at 24 h was weakly to moderately well correlated with the pharmacokinetic parameters Cmax and AUClast (ρ =0.37, p=0.03 and ρ =0.36, p=0.03 respectively) and inversely associated with clearance (ρ =−0.44; p=0.03). Histone acetylation in PBMCs at 24 h was associated with response (p = 0.026) as was the increase in fetal hemoglobin (p = 0.014); this latter association may be due to the longer on-study duration for patients with disease response. Together, these results suggest that pharmacokinetics may be an important determinant of response to HDIs – the association with histone acetylation in PBMCs at 24 h is consistent with a hypothesis that potent HDIs are needed for a critical threshold of drug exposure and durable activity.
doi:10.1111/j.1365-2141.2009.07954.x
PMCID: PMC2838427  PMID: 19874311
histone deacetylase inhibitor; romidepsin; p-glycoprotein; fetal hemoglobin; T-cell lymphoma
24.  The epidermal growth factor tyrosine kinase inhibitor AG1478 and erlotinib reverse ABCG2-mediated drug resistance 
Oncology reports  2009;21(2):483-489.
ABCG2 is an important member of ATP-binding cassette (ABC) transporter shown to confer drug resistance in cancer cells. Recent studies show that an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), gefitinib, is able to modulate the function of ABCG2 and reverse ABCG2-mediated multidrug resistance (MDR) in cancer cells. Additionally, ABCG2 expression has been shown to impact treatment treatment efficacy and development of side-effects in patients receiving gefitinib. However, it is unclear whether other EGFR TKIs interact with ABCG2 in a similar manner. In the present study, we have investigated the interaction of two other EGFR TKIs, AG1478 and erlotinib, with ABCG2. Our data show that both AG1478 and erlotinib potently sensitized drug-resistant cells overexpressing either wild type or mutated ABCG2 to the ABCG2 substrate anticancer drugs flavopiridol and mitoxantrone. Neither AG1478 nor erlotinib sensitized ABCG2-overexpressing cells to drugs that are not substrates of ABCG2 nor did they impact drug sensitivity of parental cells. Furthermore, AG1478 and erlotinib were able to significantly enhance the intracellular accumulation of mitoxantrone in cells expressing either wild type or mutated ABCG2. Additionally, they did not alter the protein expression of ABCG2 in the ABCG2-overexpressing cells. Taken together, we conclude that AG1478 and erlotinib potently reverse ABCG2-mediated MDR through directly inhibiting the drug efflux function of ABCG2 in the ABCG2-overexpressing cells. These results will be useful in the development of novel and more effective EGFR TKIs as well as the development of combinational chemotherapeutic strategies.
PMCID: PMC2845641  PMID: 19148526
Multidrug resistance; ABCG2; AG1478; erlotinib
25.  Arginine 383 is a crucial residue in ABCG2 biogenesis 
Biochimica et biophysica acta  2009;1788(7):1434-1443.
Summary
ABCG2 is an ATP-binding cassette half-transporter initially identified in multidrug-resistant cancer cell lines and recently suggested to play an important role in pharmacokinetics. Here we report studies of a conserved arginine predicted to localize near the cytoplasmic side of TM1. First, we determined the effect of losing charge and bulk at this position via substitutions with glycine and alanine. The R383G mutant when transfected into HEK cells was not detectable on immunoblot or by functional assay, while the R383A mutant exhibited detectable but significantly decreased levels compared to wild-type, partial retention in the ER and altered glycosylation. Efflux of the ABCG2-substrates mitoxantrone and pheophorbide a was observed. Our experiments suggested rapid degradation of the R383A mutant by the proteasome via a kifunensine-insensitive pathway. Interestingly, overnight treatment of the R383A mutant with mitoxantrone assisted in protein maturation as evidenced by a shift to the N-glycosylated form. The R383A mutant when expressed in insect cells, though detected on the surface, had no measurable ATPase activity. In addition, substitution with the positively charged lysine resulted in significantly decreased protein expression levels in HEK cells, while retaining function. In conclusion, arginine 383 is a crucial residue for ABCG2 biogenesis, where even the most conservative mutations have a large impact.
doi:10.1016/j.bbamem.2009.04.016
PMCID: PMC4163909  PMID: 19406100
ABCG2; ABC transporter; membrane protein; mutagenesis; biogenesis

Results 1-25 (61)