PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (674)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Origin and interpretation of cancer transcriptome profiling: the essential role of the stroma in determining prognosis and drug resistance 
EMBO Molecular Medicine  2015;7(11):1385-1387.
Mesenchymal gene expression in tumors has been implicated in cancer recurrence, metastasis, and poor prognosis of patients. The source of these mesenchymal signals has been mostly attributed to the epithelial-to-mesenchymal transition-like phenotype of epithelial tumor cells. However, recent evidence from colorectal and other cancer transcriptome studies clearly shows that the mesenchymal gene expression likely originates from stromal cells in and around the tumor and that this microenvironment specifically confers tumor aggressiveness. These findings highlight the need to move away from tumor-centric interpretations and to better establish the complementary role of the stromal microenvironment in fueling aggressive traits of cancer cells. This observation also suggests that future attempts at transcriptome profiling of whole tumor tissue must take into account the origin of mesenchymal gene expression profiles to better guide development of diagnostic and therapeutic strategies for cancer.
doi:10.15252/emmm.201505284
PMCID: PMC4644372  PMID: 26240076
2.  Lost in translation: pluripotent stem cell-derived hematopoiesis 
EMBO Molecular Medicine  2015;7(11):1388-1402.
Pluripotent stem cells (PSCs) such as embryonic stem cells or induced pluripotent stem cells represent a promising cell type to gain novel insights into human biology. Understanding the differentiation process of PSCs in vitro may allow for the identification of cell extrinsic/intrinsic factors, driving the specification process toward all cell types of the three germ layers, which may be similar to the human in vivo scenario. This would not only lay the ground for an improved understanding of human embryonic development but would also contribute toward the generation of novel cell types used in cell replacement therapies. In this line, especially the developmental process of mesodermal cells toward the hematopoietic lineage is of great interest. Therefore, this review highlights recent progress in the field of hematopoietic specification of pluripotent stem cell sources. In addition, we would like to shed light on emerging factors controlling primitive and definitive hematopoietic development and to highlight recent approaches to improve the differentiation potential of PSC sources toward hematopoietic stem/progenitor cells. While the generation of fully defined hematopoietic stem cells from PSCs remains challenging in vitro, we here underline the instructive role of cell extrinsic factors such as cytokines for the generation of PSC-derived mature hematopoietic cells. Thus, we have comprehensively examined the role of cytokines for the derivation of mature hematopoietic cell types such as macrophages, granulocytes, megakaryocytes, erythrocytes, dendritic cells, and cells of the B- and T-cell lineage.
doi:10.15252/emmm.201505301
PMCID: PMC4644373  PMID: 26174486
granulocytes; hematopoiesis; hematopoietic stem cells; iPSC; macrophages
3.  VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption 
EMBO Molecular Medicine  2015;7(11):1418-1425.
Vascular endothelial growth factor C (VEGF-C) binding to its tyrosine kinase receptor VEGFR-3 drives lymphatic vessel growth during development and in pathological processes. Although the VEGF-C/VEGFR-3 pathway provides a target for treatment of cancer and lymphedema, the physiological functions of VEGF-C in adult vasculature are unknown. We show here that VEGF-C is necessary for perinatal lymphangiogenesis, but required for adult lymphatic vessel maintenance only in the intestine. Following Vegfc gene deletion in adult mice, the intestinal lymphatic vessels, including the lacteal vessels, underwent gradual atrophy, which was aggravated when also Vegfd was deleted. VEGF-C was expressed by a subset of smooth muscle cells adjacent to the lacteals in the villus and in the intestinal wall. The Vegfc-deleted mice showed defective lipid absorption and increased fecal excretion of dietary cholesterol and fatty acids. When fed a high-fat diet, the Vegfc-deficient mice were resistant to obesity and had improved glucose metabolism. Our findings indicate that the lymphangiogenic growth factors provide trophic and dynamic regulation of the intestinal lymphatic vasculature, which could be especially important in the dietary regulation of adiposity and cholesterol metabolism.
doi:10.15252/emmm.201505731
PMCID: PMC4644375  PMID: 26459520
cholesterol; lipid absorption; lymphatic vasculature; obesity; VEGF-C
4.  The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression 
EMBO Molecular Medicine  2015;7(11):1426-1449.
The Hippo signaling pathway controls organ size and tumorigenesis through a kinase cascade that inactivates Yes-associated protein (YAP). Here, we show that YAP plays a central role in controlling the progression of cervical cancer. Our results suggest that YAP expression is associated with a poor prognosis for cervical cancer. TGF-α and amphiregulin (AREG), via EGFR, inhibit the Hippo signaling pathway and activate YAP to induce cervical cancer cell proliferation and migration. Activated YAP allows for up-regulation of TGF-α, AREG, and EGFR, forming a positive signaling loop to drive cervical cancer cell proliferation. HPV E6 protein, a major etiological molecule of cervical cancer, maintains high YAP protein levels in cervical cancer cells by preventing proteasome-dependent YAP degradation to drive cervical cancer cell proliferation. Results from human cervical cancer genomic databases and an accepted transgenic mouse model strongly support the clinical relevance of the discovered feed-forward signaling loop. Our study indicates that combined targeting of the Hippo and the ERBB signaling pathways represents a novel therapeutic strategy for prevention and treatment of cervical cancer.
doi:10.15252/emmm.201404976
PMCID: PMC4644376  PMID: 26417066
cervical cancer; EGFR; Hippo; HPV; YAP
5.  Androgen receptor profiling predicts prostate cancer outcome 
EMBO Molecular Medicine  2015;7(11):1450-1464.
Prostate cancer is the second most prevalent malignancy in men. Biomarkers for outcome prediction are urgently needed, so that high-risk patients could be monitored more closely postoperatively. To identify prognostic markers and to determine causal players in prostate cancer progression, we assessed changes in chromatin state during tumor development and progression. Based on this, we assessed genomewide androgen receptor/chromatin binding and identified a distinct androgen receptor/chromatin binding profile between primary prostate cancers and tumors with an acquired resistance to therapy. These differential androgen receptor/chromatin interactions dictated expression of a distinct gene signature with strong prognostic potential. Further refinement of the signature provided us with a concise list of nine genes that hallmark prostate cancer outcome in multiple independent validation series. In this report, we identified a novel gene expression signature for prostate cancer outcome through generation of multilevel genomic data on chromatin accessibility and transcriptional regulation and integration with publically available transcriptomic and clinical datastreams. By combining existing technologies, we propose a novel pipeline for biomarker discovery that is easily implementable in other fields of oncology.
doi:10.15252/emmm.201505424
PMCID: PMC4644377  PMID: 26412853
androgen receptor profiling; ChIP-seq; companion diagnostics for prostate cancer; FAIRE-seq; treatment prediction
6.  Characterization and quantification of proteins secreted by single human embryos prior to implantation 
EMBO Molecular Medicine  2015;7(11):1465-1479.
The use of in vitro fertilization (IVF) has revolutionized the treatment of infertility and is now responsible for 1–5% of all births in industrialized countries. During IVF, it is typical for patients to generate multiple embryos. However, only a small proportion of them possess the genetic and metabolic requirements needed in order to produce a healthy pregnancy. The identification of the embryo with the greatest developmental capacity represents a major challenge for fertility clinics. Current methods for the assessment of embryo competence are proven inefficient, and the inadvertent transfer of non-viable embryos is the principal reason why most IVF treatments (approximately two-thirds) end in failure. In this study, we investigate how the application of proteomic measurements could improve success rates in clinical embryology. We describe a procedure that allows the identification and quantification of proteins of embryonic origin, present in attomole concentrations in the blastocoel, the enclosed fluid-filled cavity that forms within 5-day-old human embryos. By using targeted proteomics, we demonstrate the feasibility of quantifying multiple proteins in samples derived from single blastocoels and that such measurements correlate with aspects of embryo viability, such as chromosomal (ploidy) status. This study illustrates the potential of high-sensitivity proteomics to measure clinically relevant biomarkers in minute samples and, more specifically, suggests that key aspects of embryo competence could be measured using a proteomic-based strategy, with negligible risk of harm to the living embryo. Our work paves the way for the development of “next-generation” embryo competence assessment strategies, based on functional proteomics.
doi:10.15252/emmm.201505344
PMCID: PMC4644378  PMID: 26471863
blastocoel; gene expression; human embryo; in vitro fertilization; proteomics
7.  The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation 
EMBO Molecular Medicine  2015;7(11):1480-1502.
The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8+ T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8+ T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD.
doi:10.15252/emmm.201505246
PMCID: PMC4644379  PMID: 26483398
cytotoxic T cells; graft-versus-host disease; NK-cell receptors; NK cells; single nucleotide polymorphism
8.  Mitochondrial roles in disease: a box full of surprises 
EMBO Molecular Medicine  2015;7(10):1245-1247.
This commentary inaugurates a new review series in EMBO Molecular Medicine focused on mitochondrial diseases. This area of medicine, which actually encompasses most disease areas, has long since come of age and is now positioned for the next leap toward the development of effective therapies. The aims of the review series are to offer a comprehensive overview of this exciting area of medicine and research and to provide timely discussions for clinicians and investigators on the new discoveries elucidating how mitochondrial metabolism contributes to an expanding group of complex, heterogeneous, and difficult-to-tackle diseases.
doi:10.15252/emmm.201505350
PMCID: PMC4604678  PMID: 26194910
9.  Compassionate use of experimental therapies: who should decide? 
EMBO Molecular Medicine  2015;7(10):1248-1250.
In addition to being an example of unsubstantiated hype about regenerative medicine, the controversy around the Italy-based Stamina Foundation's unproven stem cell therapy represents another chapter in a continuing debate about how to balance patients' requests for early access to experimental medicines with requirements for demonstrating safety and effectiveness. Compassionate use of the Stamina therapy arguably should not have been permitted under Italy's laws, but public pressure was intense and judges ultimately granted access. One lesson from these events is that expert regulatory agencies may be the institutions most competent to make compassionate use decisions and that policies should include more specific criteria for authorizing compassionate use. But even where regulatory agencies make decisions based on clear rules, difficult questions will arise.
doi:10.15252/emmm.201505262
PMCID: PMC4604679  PMID: 26202382
10.  Bad vessels beware! Semaphorins will sort you out! 
EMBO Molecular Medicine  2015;7(10):1251-1253.
Secreted class 3 semaphorins (Sema3), which signal through plexin receptors and mostly use neuropilins (Nrps) as co-receptors, were initially identified for their ability to steer navigating axons in the developing embryo. They were later found to control angiogenesis in physiological and pathological settings as well (Serini et al, 2013). Indeed, the development of a novel and aberrant vasculature is central to the pathogenesis of several human diseases, including cancer and vascular retinopathies (Goel et al, 2011). A large body of evidence demonstrates that in cancer, a massive regression of angiogenesis may trigger hypoxia-driven genetic programs, which in turn can overcome drug inhibitory mechanisms and ultimately favour cancer cell invasion and dissemination. Thus, an emerging concept in molecular medicine is to devise therapeutic strategies that, rather than simply inhibiting angiogenesis, can foster the re-establishment of a structural and functional normal network, a phenomenon often referred to as “vessel normalization” (Goel et al, 2011) (Fig 1). Of note, and in this context, Sema3A (Maione et al, 2009) and Sema3F (Wong et al, 2012) have been reported to favour the normalization of cancer vasculature and impair metastatic dissemination.
doi:10.15252/emmm.201505551
PMCID: PMC4604680  PMID: 26311294
11.  Mutant Cullin causes cardiovascular compromise 
EMBO Molecular Medicine  2015;7(10):1254-1256.
Mendelian hypertension is rare; however, Mendelian syndromes have taught us an amazing amount about mechanisms of distal sodium and chloride reabsorption, as well as how systemic hypertension might come about. In this issue of EMBO Molecular Medicine, Schumacher et al (2015) present a mouse model of the Cullin-3 (CUL3Δ403–459) mutation, which causes a form of pseudohypoaldosteronism type-2 (PHA-2). CUL3 is involved in ubiquitination. Surprising is the severity of the hypertension, which may be explained in part on the basis of CUL3 actions in vascular cells. The findings underscore the role of “cleanup” in the maintenance of normal physiology.
doi:10.15252/emmm.201505620
PMCID: PMC4604681  PMID: 26294796
12.  Mitochondrial diseases caused by toxic compound accumulation: from etiopathology to therapeutic approaches 
EMBO Molecular Medicine  2015;7(10):1257-1266.
Mitochondrial disorders are a group of highly invalidating human conditions for which effective treatment is currently unavailable and characterized by faulty energy supply due to defective oxidative phosphorylation (OXPHOS). Given the complexity of mitochondrial genetics and biochemistry, mitochondrial inherited diseases may present with a vast range of symptoms, organ involvement, severity, age of onset, and outcome. Despite the wide spectrum of clinical signs and biochemical underpinnings of this group of dis-orders, some common traits can be identified, based on both pathogenic mechanisms and potential therapeutic approaches. Here, we will review two peculiar mitochondrial disorders, ethylmalonic encephalopathy (EE) and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), caused by mutations in the ETHE1 and TYMP nuclear genes, respectively. ETHE1 encodes for a mitochondrial enzyme involved in sulfide detoxification and TYMP for a cytosolic enzyme involved in the thymidine/deoxyuridine catabolic pathway. We will discuss these two clinical entities as a paradigm of mitochondrial diseases caused by the accumulation of compounds normally present in traces, which exerts a toxic and inhibitory effect on the OXPHOS system.
doi:10.15252/emmm.201505040
PMCID: PMC4604682  PMID: 26194912
mitochondrial diseases; OXPHOS; sulfide catabolism; therapeutic approaches; thymidine/deoxyuridine catabolism
13.  Semaphorin-3C signals through Neuropilin-1 and PlexinD1 receptors to inhibit pathological angiogenesis 
EMBO Molecular Medicine  2015;7(10):1267-1284.
Retinopathy of prematurity causes visual impairment due to destructive neoangiogenesis after degeneration of the retinal microvasculature. This study was aimed at analyzing whether local delivery of Semaphorin-3C (Sema3C) suppresses pathological retinal angiogenesis. Sema3C exerted potent inhibiting effects in cellular models of angiogenesis. In an endothelial cell xenotransplantation assay, Sema3C acted primarily on immature microvessels by inducing endothelial cell apoptosis. Intravitreal administration of recombinant Sema3C disrupted endothelial tip cell formation and cell–cell contacts, which led to decreased vascular bed expansion and vessel branching in the growing retinal vasculature of newborn mice, while not affecting mature vessels in the adult retina. Sema3C administration strongly inhibited the formation of pathological pre-retinal vascular tufts during oxygen-induced retinopathy. Mechanistically, Sema3C signaled through the receptors Neuropilin-1 and PlexinD1, which were strongly expressed on vascular tufts, induced VE-cadherin internalization, and abrogated vascular endothelial growth factor (VEGF)-induced activation of the kinases AKT, FAK, and p38MAPK. This disrupted endothelial cell junctions, focal adhesions, and cytoskeleton assembly resulted in decreased cell migration and survival. Thus, this study identified Sema3C as a potent and selective inhibitor of pathological retinal angiogenesis.
doi:10.15252/emmm.201404922
PMCID: PMC4604683  PMID: 26194913
angiogenesis; semaphorin; retinopathy of prematurity; Sema3C
14.  Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia 
EMBO Molecular Medicine  2015;7(10):1285-1306.
Deletion of exon 9 from Cullin-3 (CUL3, residues 403–459: CUL3Δ403–459) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin-RING-ubiquitin-ligase complexes. Bound to KLHL3, CUL3-RBX1 ubiquitylates WNK kinases, promoting their ubiquitin-mediated proteasomal degradation. Since WNK kinases activate Na/Cl co-transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin-RING-ligase formation. We report here that the PHA2E mutant, CUL3Δ403–459, is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3Δ403–459 auto-ubiquitylates and loses interaction with two important Cullin regulators: the COP9-signalosome and CAND1. A novel knock-in mouse model of CUL3WT/Δ403–459 closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases.
doi:10.15252/emmm.201505444
PMCID: PMC4604684  PMID: 26286618
cullin; CUL3; monogenic hypertension syndromes; proteasome; ubiquitin; WNK/SPAK/OSR1 pathway
15.  Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington’s disease 
EMBO Molecular Medicine  2015;7(10):1307-1326.
Mitochondrial dysfunction is implicated in multiple neurodegenerative diseases. In order to maintain a healthy population of functional mitochondria in cells, defective mitochondria must be properly eliminated by lysosomal machinery in a process referred to as mitophagy. Here, we uncover a new molecular mechanism underlying mitophagy driven by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under the pathological condition of Huntington’s disease (HD) caused by expansion of polyglutamine repeats. Expression of expanded polyglutamine tracts catalytically inactivates GAPDH (iGAPDH), which triggers its selective association with damaged mitochondria in several cell culture models of HD. Through this mechanism, iGAPDH serves as a signaling molecule to induce direct engulfment of damaged mitochondria into lysosomes (micro-mitophagy). However, abnormal interaction of mitochondrial GAPDH with long polyglutamine tracts stalled GAPDH-mediated mitophagy, leading to accumulation of damaged mitochondria, and increased cell death. We further demonstrated that overexpression of inactive GAPDH rescues this blunted process and enhances mitochondrial function and cell survival, indicating a role for GAPDH-driven mitophagy in the pathology of HD.
doi:10.15252/emmm.201505256
PMCID: PMC4604685  PMID: 26268247
glyceraldehyde-3-phosphate dehydrogenase; Huntington’s disease; mitochondria; mitophagy; polyglutamine repeats
16.  AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway 
EMBO Molecular Medicine  2015;7(10):1327-1336.
Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms.
doi:10.15252/emmm.201505348
PMCID: PMC4604686  PMID: 26282919
activation-induced deaminase; cancer; epithelium; NKG2D; pancreas
17.  A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis 
EMBO Molecular Medicine  2015;7(10):1337-1349.
The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.
doi:10.15252/emmm.201505357
PMCID: PMC4604687  PMID: 26286619
amyloid; mechano-enzymatic cleavage; transthyretin
18.  PHD1 regulates p53-mediated colorectal cancer chemoresistance 
EMBO Molecular Medicine  2015;7(10):1350-1365.
Overcoming resistance to chemotherapy is a major challenge in colorectal cancer (CRC) treatment, especially since the underlying molecular mechanisms remain unclear. We show that silencing of the prolyl hydroxylase domain protein PHD1, but not PHD2 or PHD3, prevents p53 activation upon chemotherapy in different CRC cell lines, thereby inhibiting DNA repair and favoring cell death. Mechanistically, PHD1 activity reinforces p53 binding to p38α kinase in a hydroxylation-dependent manner. Following p53–p38α interaction and chemotherapeutic damage, p53 can be phosphorylated at serine 15 and thus activated. Active p53 allows nucleotide excision repair by interacting with the DNA helicase XPB, thereby protecting from chemotherapy-induced apoptosis. In accord with this observation, PHD1 knockdown greatly sensitizes CRC to 5-FU in mice. We propose that PHD1 is part of the resistance machinery in CRC, supporting rational drug design of PHD1-specific inhibitors and their use in combination with chemotherapy.
doi:10.15252/emmm.201505492
PMCID: PMC4604688  PMID: 26290450
chemotherapy resistance; colorectal cancer; DNA repair; prolyl hydroxylase domain proteins; tumor suppressor p53
19.  VEGF dose regulates vascular stabilization through Semaphorin3A and the Neuropilin-1+ monocyte/TGF-β1 paracrine axis 
EMBO Molecular Medicine  2015;7(10):1366-1384.
VEGF is widely investigated for therapeutic angiogenesis, but while short-term delivery is desirable for safety, it is insufficient for new vessel persistence, jeopardizing efficacy. Here, we investigated whether and how VEGF dose regulates nascent vessel stabilization, to identify novel therapeutic targets. Monoclonal populations of transduced myoblasts were used to homogeneously express specific VEGF doses in SCID mouse muscles. VEGF was abrogated after 10 and 17 days by Aflibercept treatment. Vascular stabilization was fastest with low VEGF, but delayed or prevented by higher doses, without affecting pericyte coverage. Rather, VEGF dose-dependently inhibited endothelial Semaphorin3A expression, thereby impairing recruitment of Neuropilin-1-expressing monocytes (NEM), TGF-β1 production and endothelial SMAD2/3 activation. TGF-β1 further initiated a feedback loop stimulating endothelial Semaphorin3A expression, thereby amplifying the stabilizing signals. Blocking experiments showed that NEM recruitment required endogenous Semaphorin3A and that TGF-β1 was necessary to start the Semaphorin3A/NEM axis. Conversely, Semaphorin3A treatment promoted NEM recruitment and vessel stabilization despite high VEGF doses or transient adenoviral delivery. Therefore, VEGF inhibits the endothelial Semaphorin3A/NEM/TGF-β1 paracrine axis and Semaphorin3A treatment accelerates stabilization of VEGF-induced angiogenesis.
doi:10.15252/emmm.201405003
PMCID: PMC4604689  PMID: 26323572
monocyte; TGF-β1; semaphorin3A; vascular stabilization; VEGF
20.  Spatial intra-tumour heterogeneity in acquired resistance to targeted therapy complicates the use of PDX models for co-clinical cancer studies 
EMBO Molecular Medicine  2015;7(9):1087-1089.
Targeted therapy in the treatment of cancer has produced great clinical successes. However, with these came the challenge of acquired resistance. Melanoma, a cancer that carries one of the highest mutational burdens, displays great complexity in mutational acquired resistance with a notable degree of inter-tumoural heterogeneity. In this issue of EMBO Molecular Medicine, Kemper et al (2015) describe the identification of multiple, partly novel resistance mechanisms present in one patient and within a single metastasis, where one mutation could be traced back to a pre-treatment lesion. Importantly, the observed intra-tumoural “spatial” heterogeneity can impact on the interpretability of patient-derived xenografts, and this might have implications particularly for co-clinical treatment studies.
doi:10.15252/emmm.201505431
PMCID: PMC4568944  PMID: 26174485
21.  Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? 
EMBO Molecular Medicine  2015;7(9):1090-1103.
Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and induced cardiomyocytes (iCMs). The application of these patient-specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease-specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options.
doi:10.15252/emmm.201504395
PMCID: PMC4568945  PMID: 26183451
cardiomyocytes; disease modeling; genome editing; human induced pluripotent stem cells; tissue engineering
22.  Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts 
EMBO Molecular Medicine  2015;7(9):1104-1118.
The development of targeted inhibitors, like vemurafenib, has greatly improved the clinical outcome of BRAFV600E metastatic melanoma. However, resistance to such compounds represents a formidable problem. Using whole-exome sequencing and functional analyses, we have investigated the nature and pleiotropy of vemurafenib resistance in a melanoma patient carrying multiple drug-resistant metastases. Resistance was caused by a plethora of mechanisms, all of which reactivated the MAPK pathway. In addition to three independent amplifications and an aberrant form of BRAFV600E, we identified a new activating insertion in MEK1. This MEK1T55delinsRT mutation could be traced back to a fraction of the pre-treatment lesion and not only provided protection against vemurafenib but also promoted local invasion of transplanted melanomas. Analysis of patient-derived xenografts (PDX) from therapy-refractory metastases revealed that multiple resistance mechanisms were present within one metastasis. This heterogeneity, both inter- and intra-tumorally, caused an incomplete capture in the PDX of the resistance mechanisms observed in the patient. In conclusion, vemurafenib resistance in a single patient can be established through distinct events, which may be preexisting. Furthermore, our results indicate that PDX may not harbor the full genetic heterogeneity seen in the patient’s melanoma.
doi:10.15252/emmm.201404914
PMCID: PMC4568946  PMID: 26105199
Melanoma; drug resistance; tumor heterogeneity; patient-derived xenografts
23.  The cholesterol-binding protein NPC2 restrains recruitment of stromal macrophage-lineage cells to early-stage lung tumours 
EMBO Molecular Medicine  2015;7(9):1119-1137.
The tumour microenvironment is known to play an integral role in facilitating cancer progression at advanced stages, but its function in some pre-cancerous lesions remains elusive. We have used the V600EBRAF-driven mouse lung model that develop premalignant lesions to understand stroma–tumour interactions during pre-cancerous development. In this model, we have found that immature macrophage-lineage cells (IMCs) producing PDGFA, TGFβ and CC chemokines are recruited to the stroma of premalignant lung adenomas through CC chemokine receptor 1 (CCR1)-dependent mechanisms. Stromal IMCs promote proliferation and transcriptional alterations suggestive of epithelial–mesenchymal transition in isolated premalignant lung tumour cells ex vivo, and are required for the maintenance of early-stage lung tumours in vivo. Furthermore, we have found that IMC recruitment to the microenvironment is restrained by the cholesterol-binding protein, Niemann-Pick type C2 (NPC2). Studies on isolated cells ex vivo confirm that NPC2 is secreted from tumour cells and is taken up by IMCs wherein it suppresses secretion of the CCR1 ligand CC chemokine 6 (CCL6), at least in part by facilitating its lysosomal degradation. Together, these findings show that NPC2 secreted by premalignant lung tumours suppresses IMC recruitment to the microenvironment in a paracrine manner, thus identifying a novel target for the development of chemopreventive strategies in lung cancer.
doi:10.15252/emmm.201404838
PMCID: PMC4568947  PMID: 26183450
CCR1; lung adenoma; NPC2; tumour-associated macrophage-lineage cells; V600EBRAF
24.  Folate levels modulate oncogene-induced replication stress and tumorigenicity 
EMBO Molecular Medicine  2015;7(9):1138-1152.
Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development.
doi:10.15252/emmm.201404824
PMCID: PMC4568948  PMID: 26197802
cancer development; chromosomal instability; folate deficiency; oncogene expression; replication stress
25.  Non-invasive prognostic protein biomarker signatures associated with colorectal cancer 
EMBO Molecular Medicine  2015;7(9):1153-1165.
The current management of colorectal cancer (CRC) would greatly benefit from non-invasive prognostic biomarkers indicative of clinicopathological tumor characteristics. Here, we employed targeted proteomic profiling of 80 glycoprotein biomarker candidates across plasma samples of a well-annotated patient cohort with comprehensive CRC characteristics. Clinical data included 8-year overall survival, tumor staging, histological grading, regional localization, and molecular tumor characteristics. The acquired quantitative proteomic dataset was subjected to the development of biomarker signatures predicting prognostic clinical endpoints. Protein candidates were selected into the signatures based on significance testing and a stepwise protein selection, each within 10-fold cross-validation. A six-protein biomarker signature of patient outcome could predict survival beyond clinical stage and was able to stratify patients into groups of better and worse prognosis. We further evaluated the performance of the signature on the mRNA level and assessed its prognostic value in the context of previously published transcriptional signatures. Additional signatures predicting regional tumor localization and disease dissemination were also identified. The integration of rich clinical data, quantitative proteomic technologies, and tailored computational modeling facilitated the characterization of these signatures in patient circulation. These findings highlight the value of a simultaneous assessment of important prognostic disease characteristics within a single measurement.
doi:10.15252/emmm.201404874
PMCID: PMC4568949  PMID: 26253080
colorectal cancer; prognostic protein biomarker; targeted proteomics

Results 1-25 (674)