PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (437)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Karyopherins: potential biological elements involved in the delayed graft function in renal transplant recipients 
BMC Medical Genomics  2014;7:14.
Background
Immediately after renal transplantation, patients experience rapid and significant improvement of their clinical conditions and undergo considerable systemic and cellular modifications. However, some patients present a slow recovery of the renal function commonly defined as delayed graft function (DGF). Although clinically well characterized, the molecular mechanisms underlying this condition are not totally defined, thus, we are currently missing specific clinical markers to predict and to make early diagnosis of this event.
Methods
We investigated, using a pathway analysis approach, the transcriptomic profile of peripheral blood mononuclear cells (PBMC) from renal transplant recipients with DGF and with early graft function (EGF), before (T0) and 24 hours (T24) after transplantation.
Results
Bioinformatics/statistical analysis showed that 15 pathways (8 up-regulated and 7 down-regulated) and 11 pathways (5 up-regulated and 6 down-regulated) were able to identify DGF patients at T0 and T24, respectively. Interestingly, the most up-regulated pathway at both time points was NLS-bearing substrate import into nucleus, which includes genes encoding for several subtypes of karyopherins, a group of proteins involved in nucleocytoplasmic transport. Signal transducers and activators of transcription (STAT) utilize karyopherins-alpha (KPNA) for their passage from cytoplasm into the nucleus. In vitro functional analysis demonstrated that in PBMCs of DGF patients, there was a significant KPNA-mediated nuclear translocation of the phosphorylated form of STAT3 (pSTAT3) after short-time stimulation (2 and 5 minutes) with interleukin-6.
Conclusions
Our study suggests the involvement, immediately before transplantation, of karyopherin-mediated nuclear transport in the onset and development of DGF. Additionally, it reveals that karyopherins could be good candidates as potential DGF predictive clinical biomarkers and targets for pharmacological interventions in renal transplantation. However, because of the low number of patients analyzed and some methodological limitations, additional studies are needed to validate and to better address these points.
doi:10.1186/1755-8794-7-14
PMCID: PMC3975142  PMID: 24625024
Delayed graft function; Renal transplantation; Microarray
2.  Patterns and processes of somatic mutations in nine major cancers 
BMC Medical Genomics  2014;7:11.
Background
Cancer genomes harbor hundreds to thousands of somatic nonsynonymous mutations. DNA damage and deficiency of DNA repair systems are two major forces to cause somatic mutations, marking cancer genomes with specific somatic mutation patterns. Recently, several pan-cancer genome studies revealed more than 20 mutation signatures across multiple cancer types. However, detailed cancer-type specific mutation signatures and their different features within (intra-) and between (inter-) cancer types remain largely unexplored.
Methods
We employed a matrix decomposition algorithm, namely Non-negative Matrix Factorization, to survey the somatic mutations in nine major human cancers, involving a total of ~2100 genomes.
Results
Our results revealed 3-5 independent mutational signatures in each cancer, implying that a range of 3-5 predominant mutational processes likely underlie each cancer genome. Both mutagen exposure (tobacco and sun) and changes in DNA repair systems (APOBEC family, POLE, and MLH1) were found as mutagenesis forces, each of which marks the genome with an evident mutational signature. We studied the features of several signatures and their combinatory patterns within and across cancers. On one hand, we found each signature may influence a cancer genome with different influential magnitudes even in the same cancer type and the signature-specific load reflects intra-cancer heterogeneity (e.g., the smoking-related signature in lung cancer smokers and never smokers). On the other hand, inter-cancer heterogeneity is characterized by combinatory patterns of mutational signatures, where no cancers share the same signature profile, even between two lung cancer subtypes (lung adenocarcinoma and squamous cell lung cancer).
Conclusions
Our work provides a detailed overview of the mutational characteristics in each of nine major cancers and highlights that the mutational signature profile is representative of each cancer.
doi:10.1186/1755-8794-7-11
PMCID: PMC3942057  PMID: 24552141
Somatic mutation; Cancer; Kataegis; Mutation signature; Mutagen; Heterogeneity
3.  A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population 
BMC Medical Genomics  2014;7:10.
Background
Uric acid (UA) is a complex phenotype influenced by both genetic and environmental factors as well as their interactions. Current genome-wide association studies (GWASs) have identified a variety of genetic determinants of UA in Europeans; however, such studies in Asians, especially in Chinese populations remain limited.
Methods
A two-stage GWAS was performed to identify single nucleotide polymorphisms (SNPs) that were associated with serum uric acid (UA) in a Chinese population of 12,281 participants (GWAS discovery stage included 1452 participants from the Dongfeng-Tongji cohort (DFTJ-cohort) and 1999 participants from the Fangchenggang Area Male Health and Examination Survey (FAMHES). The validation stage included another independent 8830 individuals from the DFTJ-cohort). Affymetrix Genome-Wide Human SNP Array 6.0 chips and Illumina Omni-Express platform were used for genotyping for DFTJ-cohort and FAMHES, respectively. Gene-environment interactions on serum UA levels were further explored in 10,282 participants from the DFTJ-cohort.
Results
Briefly, we identified two previously reported UA loci of SLC2A9 (rs11722228, combined P = 8.98 × 10-31) and ABCG2 (rs2231142, combined P = 3.34 × 10-42). The two independent SNPs rs11722228 and rs2231142 explained 1.03% and 1.09% of the total variation of UA levels, respectively. Heterogeneity was observed across different populations. More importantly, both independent SNPs rs11722228 and rs2231142 were nominally significantly interacted with gender on serum UA levels (P for interaction = 4.0 × 10-2 and 2.0 × 10-2, respectively). The minor allele (T) for rs11722228 in SLC2A9 has greater influence in elevating serum UA levels in females compared to males and the minor allele (T) of rs2231142 in ABCG2 had stronger effects on serum UA levels in males than that in females.
Conclusions
Two genetic loci (SLC2A9 and ABCG2) were confirmed to be associated with serum UA concentration. These findings strongly support the evidence that SLC2A9 and ABCG2 function in UA metabolism across human populations. Furthermore, we observed these associations are modified by gender.
doi:10.1186/1755-8794-7-10
PMCID: PMC3923000  PMID: 24513273
Genome-wide association study; Serum uric acid; Ethnic differences; Gene-environment interaction
4.  RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families 
Background
In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar underlying pathophysiological mechanisms. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family.
Methods
In the current study we analyzed a collection of 70 frozen breast tumor biopsies from a total of 58 families by global RNA profiling and promoter methylation analysis.
Results
We show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist among non-BRCA1/2 breast cancers. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found.
Conclusions
Our finding indicates involvement of hereditary factors in non-BRCA1/2 breast cancer families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. This is the first study to provide a biological link between breast cancers from family members of high-risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to search for new high penetrance susceptibility genes.
doi:10.1186/1755-8794-7-9
PMCID: PMC3909442  PMID: 24479546
Hereditary breast and ovarian cancer syndrome; RNA profiling; non-BRCA1/2; Gene expression analysis; Microarray analysis; Molecular subtypes; Promoter methylation
5.  Integrative genomic analysis identifies epigenetic marks that mediate genetic risk for epithelial ovarian cancer 
Background
Both genetic and epigenetic factors influence the development and progression of epithelial ovarian cancer (EOC). However, there is an incomplete understanding of the interrelationship between these factors and the extent to which they interact to impact disease risk. In the present study, we aimed to gain insight into this relationship by identifying DNA methylation marks that are candidate mediators of ovarian cancer genetic risk.
Methods
We used 214 cases and 214 age-matched controls from the Mayo Clinic Ovarian Cancer Study. Pretreatment, blood-derived DNA was profiled for genome-wide methylation (Illumina Infinium HumanMethylation27 BeadArray) and single nucleotide polymorphisms (SNPs, Illumina Infinium HD Human610-Quad BeadArray). The Causal Inference Test (CIT) was implemented to distinguish CpG sites that mediate genetic risk, from those that are consequential or independently acted on by genotype.
Results
Controlling for the estimated distribution of immune cells and other key covariates, our initial epigenome-wide association analysis revealed 1,993 significantly differentially methylated CpGs that between cases and controls (FDR, q < 0.05). The relationship between methylation and case-control status for these 1,993 CpGs was found to be highly consistent with the results of previously published, independent study that consisted of peripheral blood DNA methylation signatures in 131 pretreatment cases and 274 controls. Implementation of the CIT test revealed 17 CpG/SNP pairs, comprising 13 unique CpGs and 17 unique SNPs, which represent potential methylation-mediated relationships between genotype and EOC risk. Of these 13 CpGs, several are associated with immune related genes and genes that have been previously shown to exhibit altered expression in the context of cancer.
Conclusions
These findings provide additional insight into EOC etiology and may serve as novel biomarkers for EOC susceptibility.
doi:10.1186/1755-8794-7-8
PMCID: PMC3916313  PMID: 24479488
Integrative genomics; Ovarian cancer; Blood-based DNA methylation
6.  Surveillance for the prevention of chronic diseases through information association 
Background
Research on Genomic medicine has suggested that the exposure of patients to early life risk factors may induce the development of chronic diseases in adulthood, as the presence of premature risk factors can influence gene expression. The large number of scientific papers published in this research area makes it difficult for the healthcare professional to keep up with individual results and to establish association between them. Therefore, in our work we aim at building a computational system that will offer an innovative approach that alerts health professionals about human development problems such as cardiovascular disease, obesity and type 2 diabetes.
Methods
We built a computational system called Chronic Illness Surveillance System (CISS), which retrieves scientific studies that establish associations (conceptual relationships) between chronic diseases (cardiovascular diseases, diabetes and obesity) and the risk factors described on clinical records. To evaluate our approach, we submitted ten queries to CISS as well as to three other search engines (Google™, Google Scholar™ and Pubmed®;) — the queries were composed of terms and expressions from a list of risk factors provided by specialists.
Results
CISS retrieved a higher number of closely related (+) and somewhat related (+/-) documents, and a smaller number of unrelated (-) and almost unrelated (-/+) documents, in comparison with the three other systems. The results from the Friedman’s test carried out with the post-hoc Holm procedure (95% confidence) for our system (control) versus the results for the three other engines indicate that our system had the best performance in three of the categories (+), (-) and (+/-). This is an important result, since these are the most relevant categories for our users.
Conclusion
Our system should be able to assist researchers and health professionals in finding out relationships between potential risk factors and chronic diseases in scientific papers.
doi:10.1186/1755-8794-7-7
PMCID: PMC3938472  PMID: 24479447
Biomedical informatics; Retrieval and application of biomedical knowledge and information; Medical records and scientific papers; Ontology
7.  Comprehensive interrogation of CpG island methylation in the gene encoding COMT, a key estrogen and catecholamine regulator 
Background
The catechol-O-methyltransferase (COMT) enzyme has been widely studied due to its multiple roles in neurological functioning, estrogen biology, and methylation metabolic pathways. Numerous studies have investigated variation in the large COMT gene, with the majority focusing on single nucleotide polymorphisms (SNPs). This body of work has linked COMT genetic variation with a vast array of conditions, including several neurobehavioral disorders, pain sensitivity, and multiple human cancers. Based on COMT’s numerous biological roles and recent studies suggesting that methylation of the COMT gene impacts COMT gene expression, we comprehensively interrogated methylation in over 200 CpG dinucleotide sequences spanning the length of the COMT gene.
Methods
Using saliva-derived DNA from a non-clinical sample of human subjects, we tested for associations between COMT CpG methylation and factors reported to interact with COMT genetic effects, including demographic factors and alcohol use. Finally, we tested associations between COMT CpG methylation state and COMT gene expression in breast cancer cell lines. We interrogated >200 CpGs in 13 amplicons spanning the 5’ UTR to the last exon of the CpG dinucleotide-rich COMT gene in n = 48 subjects, n = 11 cell lines and 1 endogenous 18S rRNA control.
Results
With the exception of the CpG island in the 5’UTR and 1st exon, all other CpG islands were strongly methylated with typical dynamic ranges between 50-90%. In the saliva samples, methylation of multiple COMT loci was associated with socioeconomic status or ethnicity. We found associations between methylation at numerous loci and genotype at the functional Val 158 Met SNP (rs4680), and most of the correlations between methylation and demographic and alcohol use factors were Val 158 Met allele-specific. Methylation at several of these loci also associated with COMT gene expression in breast cancer cell lines.
Conclusions
We report the first comprehensive interrogation of COMT methylation. We corroborate previous findings of variation in COMT methylation with gene expression and the Val 158 Met genotype, and also report novel associations with socioeconomic status (SES) and ethnicity at several methylated loci. These results point to novel mechanisms for COMT regulation, which may have broad therapeutic implications.
doi:10.1186/1755-8794-7-5
PMCID: PMC3910242  PMID: 24460628
8.  Kinome and mRNA expression profiling of high-grade osteosarcoma cell lines implies Akt signaling as possible target for therapy 
Background
High-grade osteosarcoma is a primary malignant bone tumor mostly occurring in adolescents and young adults, with a second peak at middle age. Overall survival is approximately 60%, and has not significantly increased since the introduction of neoadjuvant chemotherapy in the 1970s. The genomic profile of high-grade osteosarcoma is complex and heterogeneous. Integration of different types of genome-wide data may be advantageous in extracting relevant information from the large number of aberrations detected in this tumor.
Methods
We analyzed genome-wide gene expression data of osteosarcoma cell lines and integrated these data with a kinome screen. Data were analyzed in statistical language R, using LIMMA for detection of differential expression/phosphorylation. We subsequently used Ingenuity Pathways Analysis to determine deregulated pathways in both data types.
Results
Gene set enrichment indicated that pathways important in genomic stability are highly deregulated in these tumors, with many genes showing upregulation, which could be used as a prognostic marker, and with kinases phosphorylating peptides in these pathways. Akt and AMPK signaling were identified as active and inactive, respectively. As these pathways have an opposite role on mTORC1 signaling, we set out to inhibit Akt kinases with the allosteric Akt inhibitor MK-2206. This resulted in inhibition of proliferation of osteosarcoma cell lines U-2 OS and HOS, but not of 143B, which harbors a KRAS oncogenic transformation.
Conclusions
We identified both overexpression and hyperphosphorylation in pathways playing a role in genomic stability. Kinome profiling identified active Akt signaling, which could inhibit proliferation in 2/3 osteosarcoma cell lines. Inhibition of PI3K/Akt/mTORC1 signaling may be effective in osteosarcoma, but further studies are required to determine whether this pathway is active in a substantial subgroup of this heterogeneous tumor.
doi:10.1186/1755-8794-7-4
PMCID: PMC3932036  PMID: 24447333
Osteosarcoma; Tumor cell lines; Kinome profiling; Gene expression profiling; Genomic instability; Bone tumor
9.  Validation of PhenX measures in the personalized medicine research project for use in gene/environment studies 
Background
The purpose of this paper is to describe the data collection efforts and validation of PhenX measures in the Personalized Medicine Research Project (PMRP) cohort.
Methods
Thirty-six measures were chosen from the PhenX Toolkit within the following domains: demographics; anthropometrics; alcohol, tobacco and other substances; cardiovascular; environmental exposures; cancer; psychiatric; neurology; and physical activity and physical fitness. Eligibility criteria for the current study included: living PMRP subjects with known addresses who consented to future contact and were not currently living in a nursing home, available GWAS data from eMERGE I for subjects where age-related cataract, HDL, dementia and resistant hypertension were the primary phenotypes, thus biasing the sample to the older PMRP participants. The questionnaires were mailed twice. Data from the PhenX measures were compared with information from PMRP questionnaires and data from Marshfield Clinic electronic medical records.
Results
Completed PhenX questionnaires were returned by 2271 subjects for a final response rate of 70%. The mean age reported on the PhenX questionnaire (73.1 years) was greater than the PMRP questionnaire (64.8 years) because the data were collected at different time points. The mean self-reported weight, and subsequently calculated BMI, were less on the PhenX survey than the measured values at the time of enrollment into PMRP (PhenX means 173.5 pounds and BMI 28.2 kg/m2 versus PMRP 182.9 pounds and BMI 29.6 kg/m2). There was 95.3% agreement between the two questionnaires about having ever smoked at least 100 cigarettes. 139 (6.2%) of subjects indicated on the PhenX questionnaire that they had been told they had a stroke. Of them, only 15 (10.8%) had no electronic indication of a prior stroke or TIA. All of the age-and gender-specific 95% confidence limits around point estimates for major depressive episodes overlap and show that 31% of women aged 50–64 reported symptoms associated with a major depressive episode.
Conclusions
The approach employed resulted in a high response rate and valuable data for future gene/environment analyses. These results and high response rate highlight the utility of the PhenX Toolkit to collect valid phenotypic data that can be shared across groups to facilitate gene/environment studies.
doi:10.1186/1755-8794-7-3
PMCID: PMC3896802  PMID: 24423110
10.  Whole-genome sequencing of matched primary and metastatic hepatocellular carcinomas 
Background
To gain biological insights into lung metastases from hepatocellular carcinoma (HCC), we compared the whole-genome sequencing profiles of primary HCC and paired lung metastases.
Methods
We used whole-genome sequencing at 33X-43X coverage to profile somatic mutations in primary HCC (HBV+) and metachronous lung metastases (> 2 years interval).
Results
In total, 5,027-13,961 and 5,275-12,624 somatic single-nucleotide variants (SNVs) were detected in primary HCC and lung metastases, respectively. Generally, 38.88-78.49% of SNVs detected in metastases were present in primary tumors. We identified 65–221 structural variations (SVs) in primary tumors and 60–232 SVs in metastases. Comparison of these SVs shows very similar and largely overlapped mutated segments between primary and metastatic tumors. Copy number alterations between primary and metastatic pairs were also found to be closely related. Together, these preservations in genomic profiles from liver primary tumors to metachronous lung metastases indicate that the genomic features during tumorigenesis may be retained during metastasis.
Conclusions
We found very similar genomic alterations between primary and metastatic tumors, with a few mutations found specifically in lung metastases, which may explain the clinical observation that both primary and metastatic tumors are usually sensitive or resistant to the same systemic treatments.
doi:10.1186/1755-8794-7-2
PMCID: PMC3896667  PMID: 24405831
Cancer; Hepatocellular carcinomas (HCC); Lung metastasis; Somatic; Next-generation sequencing (NGS)
11.  Disease specific characteristics of fetal epigenetic markers for non-invasive prenatal testing of trisomy 21 
Background
Non-invasive prenatal testing of trisomy 21 (T21) is being actively investigated using fetal-specific epigenetic markers (EPs) that are present in maternal plasma. Recently, 12 EPs on chromosome 21 were identified based on tissue-specific epigenetic characteristics between placenta and blood, and demonstrated excellent clinical performance in the non-invasive detection of fetal T21. However, the disease-specific epigenetic characteristics of the EPs have not been established. Therefore, we validated the disease-specific epigenetic characteristics of these EPs for use in non-invasive detection of fetal T21.
Methods
We performed a high-resolution tiling array analysis of human chromosome 21 using a methyl-CpG binding domain-based protein (MBD) method with whole blood samples from non-pregnant normal women, whole blood samples from pregnant normal women, placenta samples of normal fetuses, and placenta samples of T21 fetuses. Tiling array results were validated by bisulfite direct sequencing and qPCR.
Results
Among 12 EPs, only four EPs were confirmed to be hypermethylated in normal placenta and hypomethylated in blood. One of these four showed a severe discrepancy in the methylation patterns of T21 placenta samples, and another was located within a region of copy number variations. Thus, two EPs were confirmed to be potential fetal-specific markers based on their disease-specific epigenetic characteristics. The array results of these EPs were consisted with the results obtained by bisulfite direct sequencing and qPCR. Moreover, the two EPs were detected in maternal plasma.
Conclusions
We validated that two EPs have the potential to be fetal-specific EPs which is consistent with their disease-specific epigenetic characteristics. The findings of this study suggest that disease-specific epigenetic characteristics should be considered in the development of fetal-specific EPs for non-invasive prenatal testing of T21.
doi:10.1186/1755-8794-7-1
PMCID: PMC3892082  PMID: 24397966
Trisomy 21; Non-invasive prenatal testing; Epigenetic markers
12.  Distinct DNA methylation patterns of cognitive impairment and trisomy 21 in down syndrome 
BMC Medical Genomics  2013;6:58.
Background
The presence of an extra whole or part of chromosome 21 in people with Down syndrome (DS) is associated with multiple neurological changes, including pathological aging that often meets the criteria for Alzheimer’s Disease (AD). In addition, trisomies have been shown to disrupt normal epigenetic marks across the genome, perhaps in response to changes in gene dosage. We hypothesized that trisomy 21 would result in global epigenetic changes across all participants, and that DS patients with cognitive impairment would show an additional epigenetic signature.
Methods
We therefore examined whole-genome DNA methylation in buccal epithelial cells of 10 adults with DS and 10 controls to determine whether patterns of DNA methylation were correlated with DS and/or cognitive impairment. In addition we examined DNA methylation at the APP gene itself, to see whether there were changes in DNA methylation in this population. Using the Illumina Infinium 450 K Human Methylation Array, we examined more than 485,000 CpG sites distributed across the genome in buccal epithelial cells.
Results
We found 3300 CpGs to be differentially methylated between the groups, including 495 CpGs that overlap with clusters of differentially methylated probes. In addition, we found 5 probes that were correlated with cognitive function including two probes in the TSC2 gene that has previously been associated with Alzheimer’s disease pathology. We found no enrichment on chromosome 21 in either case, and targeted analysis of the APP gene revealed weak evidence for epigenetic impacts related to the AD phenotype.
Conclusions
Overall, our results indicated that both Trisomy 21 and cognitive impairment were associated with distinct patterns of DNA methylation.
doi:10.1186/1755-8794-6-58
PMCID: PMC3879645  PMID: 24373378
Down syndrome; DNA methylation; Cognitive impairment; Aging; Illumina 450k human methylation array
13.  Integrating human omics data to prioritize candidate genes 
BMC Medical Genomics  2013;6:57.
Background
The identification of genes involved in human complex diseases remains a great challenge in computational systems biology. Although methods have been developed to use disease phenotypic similarities with a protein-protein interaction network for the prioritization of candidate genes, other valuable omics data sources have been largely overlooked in these methods.
Methods
With this understanding, we proposed a method called BRIDGE to prioritize candidate genes by integrating disease phenotypic similarities with such omics data as protein-protein interactions, gene sequence similarities, gene expression patterns, gene ontology annotations, and gene pathway memberships. BRIDGE utilizes a multiple regression model with lasso penalty to automatically weight different data sources and is capable of discovering genes associated with diseases whose genetic bases are completely unknown.
Results
We conducted large-scale cross-validation experiments and demonstrated that more than 60% known disease genes can be ranked top one by BRIDGE in simulated linkage intervals, suggesting the superior performance of this method. We further performed two comprehensive case studies by applying BRIDGE to predict novel genes and transcriptional networks involved in obesity and type II diabetes.
Conclusion
The proposed method provides an effective and scalable way for integrating multi omics data to infer disease genes. Further applications of BRIDGE will be benefit to providing novel disease genes and underlying mechanisms of human diseases.
doi:10.1186/1755-8794-6-57
PMCID: PMC3878333  PMID: 24344781
14.  Correlation of WWOX, RUNX2 and VEGFA protein expression in human osteosarcoma 
BMC Medical Genomics  2013;6:56.
Background
To investigate associations between WW domain-containing oxidoreductase (WWOX), runt-related transcription factor 2 (RUNX2) and vascular endothelial growth factor alpha (VEGFA) in human osteosarcoma (OS).
Methods
Copy number aberrations of WWOX, RUNX2and VEGFA genes were detected by microarray comparative genomic hybridization (aCGH) in 10 fresh OS tissue samples. VEGFA gene alterations were also investigated and validated by fluorescence in situ hybridization (FISH) in 54 formalin-fixed and paraffin-embedded (FFPE) OS samples. Protein expression of WWOX, RUNX2 and VEGFA were examined in 54 FFPE OS samples by immunohistochemistry (IHC).
Results
Analysis of previously published OS aCGH data (GSE9654) and aCGH data from this study (GSE19180) identified significant deletion of WWOX in 30% (6/20) of OS samples, whilst significant increase in both RUNX2 and VEGFA gene copy numbers were detected in 55% (11/20) and 60% (12/20) of OS samples, respectively. FISH demonstrated increased VEGFA gene copy number in 65.9% (31/47) of evaluable samples, in either focal or large fragment forms. Compared with positive expression of WWOX in 38.9% of the OS samples, positive expression of RUNX2 and VEGFA protein was found in 48.1 and 75.9% of samples. Although there was no significant association between gene copy number aberration and protein expression for WWOX and RUNX2, significant positive correlation between increased VEGFA gene copy number and VEGFA protein expression was observed. Although there was no significant reverse association between WWOX and RUNX2 expression, a significantly positive relationship was observed between RUNX2 and VEGFA protein expression.
Conclusions
Our data show increased RUNX2 and VEGFA gene copy numbers and elevation of their respective proteins in human OS. Positive correlation of RUNX2 and VEGFA suggests that both increased VEGFA gene copy number and RUNX2 overexpression facilitate increased expression of VEGFA.
doi:10.1186/1755-8794-6-56
PMCID: PMC3878685  PMID: 24330824
Osteosarcoma; WWOX; RUNX2; VEGFA; aCGH,FISH; Gene amplification
15.  Unraveling the characteristics of microRNA regulation in the developmental and aging process of the human brain 
BMC Medical Genomics  2013;6:55.
Background
Structure and function of the human brain are subjected to dramatic changes during its development and aging. Studies have demonstrated that microRNAs (miRNAs) play an important role in the regulation of brain development and have a significant impact on brain aging and neurodegeneration. However, the underling molecular mechanisms are not well understood. In general, development and aging are conventionally studied separately, which may not completely address the physiological mechanism over the entire lifespan. Thus, we study the regulatory effect between miRNAs and mRNAs in the developmental and aging process of the human brain by integrating miRNA and mRNA expression profiles throughout the lifetime.
Methods
In this study, we integrated miRNA and mRNA expression profiles in the human brain across lifespan from the network perspective. First, we chose the age-related miRNAs by polynomial regression models. Second, we constructed the bipartite miRNA-mRNA regulatory network by pair-wise correlation coefficient analysis between miRNA and mRNA expression profiles. At last, we constructed the miRNA-miRNA synergistic network from the miRNA-mRNA network, considering not only the enrichment of target genes but also GO function enrichment of co-regulated target genes.
Results
We found that the average degree of age-related miRNAs was significantly higher than that of non age-related miRNAs in the miRNA-mRNA regulatory network. The topological features between age-related and non age-related miRNAs were significantly different, and 34 reliable age-related miRNA synergistic modules were identified using Cfinder in the miRNA-miRNA synergistic network. The synergistic regulations of module genes were verified by reviewing miRNA target databases and previous studies.
Conclusions
Age-related miRNAs play a more important role than non age-related mrRNAs in the developmental and aging process of the human brain. The age-related miRNAs have synergism, which tend to work together as small modules. These results may provide a new insight into the regulation of miRNAs in the developmental and aging process of the human brain.
doi:10.1186/1755-8794-6-55
PMCID: PMC3878884  PMID: 24321625
Human brain; Development; Aging; miRNA; Synergistic regulation
16.  Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis 
BMC Medical Genomics  2013;6:54.
Background
Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis.
Methods
We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities.
Results
A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis.
Conclusions
We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression.
doi:10.1186/1755-8794-6-54
PMCID: PMC3907018  PMID: 24308539
Colorectal cancer; Genomics; Genetics; Clinical stage; Metastasis
17.  NeuroGeM, a knowledgebase of genetic modifiers in neurodegenerative diseases 
BMC Medical Genomics  2013;6:52.
Background
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons in the human brain. Although the majority of NDs are sporadic, evidence is accumulating that they have a strong genetic component. Therefore, significant efforts have been made in recent years to not only identify disease-causing genes but also genes that modify the severity of NDs, so-called genetic modifiers. To date there exists no compendium that lists and cross-links genetic modifiers of different NDs.
Description
In order to address this need, we present NeuroGeM, the first comprehensive knowledgebase providing integrated information on genetic modifiers of nine different NDs in the model organisms D. melanogaster, C. elegans, and S. cerevisiae. NeuroGeM cross-links curated genetic modifier information from the different NDs and provides details on experimental conditions used for modifier identification, functional annotations, links to homologous proteins and color-coded protein-protein interaction networks to visualize modifier interactions. We demonstrate how this database can be used to generate new understanding through meta-analysis. For instance, we reveal that the Drosophila genes DnaJ-1, thread, Atx2, and mub are generic modifiers that affect multiple if not all NDs.
Conclusion
As the first compendium of genetic modifiers, NeuroGeM will assist experimental and computational scientists in their search for the pathophysiological mechanisms underlying NDs. http://chibi.ubc.ca/neurogem.
doi:10.1186/1755-8794-6-52
PMCID: PMC3833180  PMID: 24229347
Neurodegenerative diseases; Genetic modifiers; Database; Knowledgebase; Alzheimer’s disease; Parkinson’s disease; Huntington’s disease
18.  Co-expression network analysis and genetic algorithms for gene prioritization in preeclampsia 
BMC Medical Genomics  2013;6:51.
Background
In this study, we explored the gene prioritization in preeclampsia, combining co-expression network analysis and genetic algorithms optimization approaches. We analysed five public projects obtaining 1,146 significant genes after cross-platform and processing of 81 and 149 microarrays in preeclamptic and normal conditions, respectively.
Methods
After co-expression network construction, modular and node analysis were performed using several approaches. Moreover, genetic algorithms were also applied in combination with the nearest neighbour and discriminant analysis classification methods.
Results
Significant differences were found in the genes connectivity distribution, both in normal and preeclampsia conditions pointing to the need and importance of examining connectivity alongside expression for prioritization. We discuss the global as well as intra-modular connectivity for hubs detection and also the utility of genetic algorithms in combination with the network information. FLT1, LEP, INHA and ENG genes were identified according to the literature, however, we also found other genes as FLNB, INHBA, NDRG1 and LYN highly significant but underexplored during normal pregnancy or preeclampsia.
Conclusions
Weighted genes co-expression network analysis reveals a similar distribution along the modules detected both in normal and preeclampsia conditions. However, major differences were obtained by analysing the nodes connectivity. All models obtained by genetic algorithm procedures were consistent with a correct classification, higher than 90%, restricting to 30 variables in both classification methods applied.
Combining the two methods we identified well known genes related to preeclampsia, but also lead us to propose new candidates poorly explored or completely unknown in the pathogenesis of preeclampsia, which may have to be validated experimentally.
doi:10.1186/1755-8794-6-51
PMCID: PMC3829810  PMID: 24219996
19.  Hi-Plex for high-throughput mutation screening: application to the breast cancer susceptibility gene PALB2 
BMC Medical Genomics  2013;6:48.
Background
Massively parallel sequencing (MPS) has revolutionised biomedical research and offers enormous capacity for clinical application. We previously reported Hi-Plex, a streamlined highly-multiplexed PCR-MPS approach, allowing a given library to be sequenced with both the Ion Torrent and TruSeq chemistries. Comparable sequencing efficiency was achieved using material derived from lymphoblastoid cell lines and formalin-fixed paraffin-embedded tumour.
Methods
Here, we report high-throughput application of Hi-Plex by performing blinded mutation screening of the coding regions of the breast cancer susceptibility gene PALB2 on a set of 95 blood-derived DNA samples that had previously been screened using Sanger sequencing and high-resolution melting curve analysis (n = 90), or genotyped by Taqman probe-based assays (n = 5). Hi-Plex libraries were prepared simultaneously using relatively inexpensive, readily available reagents in a simple half-day protocol followed by MPS on a single MiSeq run.
Results
We observed that 99.93% of amplicons were represented at ≥10X coverage. All 56 previously identified variant calls were detected and no false positive calls were assigned. Four additional variant calls were made and confirmed upon re-analysis of previous data or subsequent Sanger sequencing.
Conclusions
These results support Hi-Plex as a powerful approach for rapid, cost-effective and accurate high-throughput mutation screening. They further demonstrate that Hi-Plex methods are suitable for and can meet the demands of high-throughput genetic testing in research and clinical settings.
doi:10.1186/1755-8794-6-48
PMCID: PMC3829211  PMID: 24206657
Hi-Plex; Massively parallel sequencing; Mutation screening; PALB2; Molecular diagnostics
20.  ChIP-seq in steatohepatitis and normal liver tissue identifies candidate disease mechanisms related to progression to cancer 
BMC Medical Genomics  2013;6:50.
Background
Steatohepatitis occurs in alcoholic liver disease and may progress to liver cirrhosis and hepatocellular carcinoma. Its molecular pathogenesis is to a large degree unknown. Histone modifications play a key role in transcriptional regulations as marks for silencing and activation of gene expression and as marks for functional elements. Many transcription factors (TFs) are crucial for the control of the genes involved in metabolism, and abnormality in their function may lead to disease.
Methods
We performed ChIP-seq of the histone modifications H3K4me1, H3K4me3 and H3K27ac and a candidate transcription factor (USF1) in liver tissue from patients with steatohepatitis and normal livers and correlated results to mRNA-expression and genotypes.
Results
We found several regions that are differentially enriched for histone modifications between disease and normal tissue, and qRT-PCR results indicated that the expression of the tested genes strongly correlated with differential enrichment of histone modifications but is independent of USF1 enrichment. By gene ontology analysis of differentially modified genes we found many disease associated genes, some of which had previously been implicated in the etiology of steatohepatitis. Importantly, the genes associated to the strongest histone peaks in the patient were over-represented in cancer specific pathways suggesting that the tissue was on a path to develop to cancer, a common complication to the disease. We also found several novel SNPs and GWAS catalogue SNPs that are candidates to be functional and therefore needs further study.
Conclusion
In summary we find that analysis of chromatin features in tissue samples provides insight into disease mechanisms.
doi:10.1186/1755-8794-6-50
PMCID: PMC3831757  PMID: 24206787
ChIP-seq; Tissue samples; Steatohepatitis; Cancer networks
21.  DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of fallot 
BMC Medical Genomics  2013;6:46.
Background
NKX2-5, GATA4 and HAND1 are essential for heart development, however, little is known regarding their epigenetic regulation in the pathogenesis of tetralogy of fallot (TOF).
Methods
Methylation levels were measured in three regions of NKX2-5 (M1: -1596 bp ~ -1374 bp, M2: -159 bp ~ 217 bp and M3: 1058 bp ~ 1524 bp), one region of GATA4 (M: -392 bp ~ 107 bp) and three regions of HAND1 (M1: -887 bp ~ -414 bp, M2: -436 bp ~ 2 bp and M3: 37 bp ~ 398 bp) using the Sequenom MassARRAY platform. QRT-PCR was used to analyze NKX2-5 and HAND1 mRNA levels in the right ventricular myocardium of TOF patients.
Results
TOF patients had a significantly higher NKX2-5_M3 median methylation level than controls (41.65% vs. 22.18%; p = 0.0074; interquartile range [IQR]: 30.46%–53.35%, N = 30 and 20.07%–24.31%, N = 5; respectively). The HAND1_M1 median methylation level was also significantly higher in TOF patients than controls (30.05% vs. 17.54%; p = 0.0054; IQR: 20.77%–40.89%, N = 30 and IQR: 14.69%–20.64%; N = 6; respectively). The methylation statuses of NKX2-5_M1, NKX2-5_M2, GATA4_M, HAND1_M2 or HAND1_M3 were not significantly different in TOF patients compared to controls. The methylation values for NKX2-5_M3 were negatively correlated with mRNA levels (r = - 0.463, p = 0.010, N = 30) and there was a significant association between HAND1_M1 methylation status and mRNA levels (r = - 0.524, p = 0.003, N = 30) in TOF patients.
Conclusions
Aberrant methylation statuses of the NKX2-5 gene body and HAND1 promoter regions are associated with the regulation of gene transcription in TOF patients and may play an important role in the pathogenesis of TOF.
doi:10.1186/1755-8794-6-46
PMCID: PMC3819647  PMID: 24182332
DNA methylation; NKX2-5; GATA4 and HAND1 genes; Tetralogy of fallot
22.  Intratumoral genetic heterogeneity in metastatic melanoma is accompanied by variation in malignant behaviors 
BMC Medical Genomics  2013;6:40.
Background
Intratumoral heterogeneity is a major obstacle for the treatment of cancer, as the presence of even minor populations that are insensitive to therapy can lead to disease relapse. Increased clonal diversity has been correlated with a poor prognosis for cancer patients, and we therefore examined genetic, transcriptional, and functional diversity in metastatic melanoma.
Methods
Amplicon sequencing and SNP microarrays were used to profile somatic mutations and DNA copy number changes in multiple regions from metastatic lesions. Clonal genetic and transcriptional heterogeneity was also assessed in single cell clones from early passage cell lines, which were then subjected to clonogenicity and drug sensitivity assays.
Results
MAPK pathway and tumor suppressor mutations were identified in all regions of the melanoma metastases analyzed. In contrast, we identified copy number abnormalities present in only some regions in addition to homogeneously present changes, suggesting ongoing genetic evolution following metastatic spread. Copy number heterogeneity from a tumor was represented in matched cell line clones, which also varied in their clonogenicity and drug sensitivity. Minor clones were identified based on dissimilarity to the parental cell line, and these clones were the most clonogenic and least sensitive to drugs. Finally, treatment of a polyclonal cell line with paclitaxel to enrich for drug-resistant cells resulted in the adoption of a gene expression profile with features of one of the minor clones, supporting the idea that these populations can mediate disease relapse.
Conclusion
Our results support the hypothesis that minor clones might have major consequences for patient outcomes in melanoma.
doi:10.1186/1755-8794-6-40
PMCID: PMC3852494  PMID: 24119551
Melanoma; Microarray; Heterogeneity; Mutation profiling; Copy number; Clonal
23.  Treatment of mouse liver slices with cholestatic hepatotoxicants results in down-regulation of Fxr and its target genes 
BMC Medical Genomics  2013;6:39.
Background
Unexpected cholestasis substantially contributes to drug failure in clinical trials. Current models used for safety assessment in drug development do not accurately predict cholestasis in humans. Therefore, it is of relevance to develop new screening models that allow identifying drugs with cholestatic properties.
Methods
We employed mouse precision cut liver slices (PCLS), which were incubated 24 h with two model cholestatic compounds: cyclosporin A (CsA) and chlorpromazine (CPZ). Subsequently, transcriptome analysis using DNA microarrays and q-PCR were performed to identify relevant biological processes and biomarkers. Additionally, histology was carried out and levels of triglycerides (TG) and bile acids (BA) were measured. To verify the ex vivo mouse data, these were compared with publically available human data relevant for cholestasis.
Results
Whole genome gene expression analysis showed that CsA up-regulated pathways related to NF-κB, ER stress and inflammation. Both CsA and CPZ down-regulated processes related to extracellular matrix (ECM) remodelling, BA homeostasis, Fxr signalling, and energy metabolism. The differential expression of a number of characteristic genes (e.g. Abcg5, Abcg8, Klf15, and Baat) could be confirmed by q-PCR. Histology revealed that CsA but not CPZ induced “ballooning” of hepatocytes. No effects on TG and BA levels were observed after incubation of PCLS with CsA and CPZ. A substantial number of processes altered in CsA- and CPZ-treated mouse PCLS ex vivo was also found to be affected in liver biopsies of cholestatic patients.
Conclusion
The present study demonstrated that mouse PCLS can be used as a tool to identify mechanisms of action of cholestatic model compounds. The induction of general stress responses and down-regulated Fxr signalling could play a role in the development of drug induced cholestasis. Importantly, comparative data analysis showed that the ex vivo mouse findings are also relevant for human pathology. Moreover, this work provides a set of genes that are potentially useful to assess drugs for cholestatic properties.
doi:10.1186/1755-8794-6-39
PMCID: PMC3852711  PMID: 24112857
Cholestasis; Precision cut liver slices; Alternatives for animal testing; Transcriptome; Fxr (Nr1h4); Biomarkers
24.  Molecular differential diagnosis of follicular thyroid carcinoma and adenoma based on gene expression profiling by using formalin-fixed paraffin-embedded tissues 
BMC Medical Genomics  2013;6:38.
Background
Differential diagnosis between malignant follicular thyroid cancer (FTC) and benign follicular thyroid adenoma (FTA) is a great challenge for even an experienced pathologist and requires special effort. Molecular markers may potentially support a differential diagnosis between FTC and FTA in postoperative specimens. The purpose of this study was to derive molecular support for differential post-operative diagnosis, in the form of a simple multigene mRNA-based classifier that would differentiate between FTC and FTA tissue samples.
Methods
A molecular classifier was created based on a combined analysis of two microarray datasets (using 66 thyroid samples). The performance of the classifier was assessed using an independent dataset comprising 71 formalin-fixed paraffin-embedded (FFPE) samples (31 FTC and 40 FTA), which were analysed by quantitative real-time PCR (qPCR). In addition, three other microarray datasets (62 samples) were used to confirm the utility of the classifier.
Results
Five of 8 genes selected from training datasets (ELMO1, EMCN, ITIH5, KCNAB1, SLCO2A1) were amplified by qPCR in FFPE material from an independent sample set. Three other genes did not amplify in FFPE material, probably due to low abundance. All 5 analysed genes were downregulated in FTC compared to FTA. The sensitivity and specificity of the 5-gene classifier tested on the FFPE dataset were 71% and 72%, respectively.
Conclusions
The proposed approach could support histopathological examination: 5-gene classifier may aid in molecular discrimination between FTC and FTA in FFPE material.
doi:10.1186/1755-8794-6-38
PMCID: PMC3852913  PMID: 24099521
Follicular thyroid adenoma; Follicular thyroid cancer; Gene expression; Microarray; Formalin-fixed paraffin-embedded blocks
25.  Circadian transcriptome analysis in human fibroblasts from Hunter syndrome and impact of iduronate-2-sulfatase treatment 
BMC Medical Genomics  2013;6:37.
Background
Hunter syndrome (HS) is a lysosomal storage disease caused by iduronate-2-sulfatase (IDS) deficiency and loss of ability to break down and recycle the glycosaminoglycans, heparan and dermatan sulfate, leading to impairment of cellular processes and cell death. Cell activities and functioning of intracellular organelles are controlled by the clock genes (CGs), driving the rhythmic expression of clock controlled genes (CCGs). We aimed to evaluate the expression of CGs and downstream CCGs in HS, before and after enzyme replacement treatment with IDS.
Methods
The expression levels of CGs and CCGs were evaluated by a whole transcriptome analysis through Next Generation Sequencing in normal primary human fibroblasts and fibroblasts of patients affected by HS before and 24 h/144 h after IDS treatment. The time related expression of CGs after synchronization by serum shock was also evaluated by qRT-PCR before and after 24 hours of IDS treatment.
Results
In HS fibroblasts we found altered expression of several CGs and CCGs, with dynamic changes 24 h and 144 h after IDS treatment. A semantic hypergraph-based analysis highlighted five gene clusters significantly associated to important biological processes or pathways, and five genes, AHR, HIF1A, CRY1, ITGA5 and EIF2B3, proven to be central players in these pathways. After synchronization by serum shock and 24 h treatment with IDS the expression of ARNTL2 at 10 h (p = 0.036), PER1 at 4 h (p = 0.019), PER2 at 10 h (p = 0.041) and 16 h (p = 0.043) changed in HS fibroblasts.
Conclusion
CG and CCG expression is altered in HS fibroblasts and IDS treatment determines dynamic modifications, suggesting a direct involvement of the CG machinery in the physiopathology of cellular derangements that characterize HS.
doi:10.1186/1755-8794-6-37
PMCID: PMC3851237  PMID: 24083598
Clock gene; Hunter syndrome; Lysosomal storage disease; Circadian rhythm

Results 1-25 (437)