Search tips
Search criteria

Results 1-25 (197)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Modeling cholesterol metabolism by gene expression profiling in the hippocampus† 
Molecular bioSystems  2011;7(6):1891-1901.
An important part of the challenge of building models of biochemical reactions is determining reaction rate constants that transform substrates into products. We present a method to derive enzymatic kinetic values from mRNA expression levels for modeling biological networks without requiring further tuning. The core metabolic reactions of cholesterol in the brain, particularly in the hippocampus, were simulated. To build the model the baseline mRNA expression levels of genes involved in cholesterol metabolism were obtained from the Allen Mouse Brain Atlas. The model is capable of replicating the trends of relative cholesterol levels in Alzheimer’s and Huntington’s diseases; and reliably simulated SLOS, desmosterolosis, and Dhcr14/Lbr knockout studies. A sensitivity analysis correctly uncovers the Hmgcr, Idi2 and Fdft1 sites that regulate cholesterol homeostasis. Overall, our model and methodology can be used to pinpoint key reactions, which, upon manipulation, may predict altered cholesterol levels and reveal insights into potential drug therapy targets under diseased conditions.
PMCID: PMC4105148  PMID: 21451815
2.  Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing 
Molecular bioSystems  2012;8(12):3142-3165.
The mode of action of the bacterial ter cluster and TelA genes, implicated in natural resistance to tellurite and other xenobiotic toxic compounds, pore-forming colicins and several bacteriophages has remained enigmatic for almost two decades. Using comparative genomics, sequence-profile searches and structural analysis we present evidence that the ter gene products and their functional partners constitute previously underappreciated, chemical stress response and anti-viral defense systems of bacteria. Based on contextual information from conserved gene neighborhoods and domain architectures, we show that the ter gene products and TelA lie at the center of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing. Our analysis suggests that the multiple metal-binding and non-binding TerD paralogs and TerC are likely to constitute a membrane-associated complex, which might also include TerB and TerY, and feature several, distinct metal-binding sites. Versions of the TerB domain might also bind small molecule ligands and link the TerD paralog-TerC complex to biosynthetic modules comprised of phosphoribosyltransferases (PRTases), ATP grasp amidoligases, TIM-barrel carbon-carbon lyases, and HAD phosphoesterases, which are predicted to synthesize novel nucleoside-like molecules. One of the PRTases is also likely to interact with RNA by means of its Pelota/Ribosomal protein L7AE-like domain. The von Willebrand factor A domain protein, TerY, is predicted to be part of a distinct phosphorylation switch, coupling a protein kinase and a PP2C phosphatase. We show, based on the evidence from numerous conserved gene neighborhoods and domain architectures, that both the TerB and TelA domains have been linked to diverse lipid-interaction domains, such as two novel PH-like and the Coq4 domains, in different bacteria and are likely to comprise membrane-associated sensory complexes that might additionally contain periplasmic binding-protein-II and OmpA domains. The TerD and TerB domains and the TerY-associated phosphorylation system are also functionally linked to distinct DNA-processing complexes, which contain proteins with SWI2/SNF2 and RecQ-like helicases, multiple AAA+ ATPases, McrC-N-terminal domain proteins, several restriction endonuclease fold DNases, DNA-binding domains and a type-VII/Esx-like system, which is at the center of a predicted DNA transfer apparatus. These DNA-processing modules and associated genes are predicted to be involved in restriction or suicidal action in response to phages and possibly repairing xenobiotic-induced DNA damage. In some eukaryotes, certain components of the ter system appear to have recruited to function in conjunction with the ubiquitin system and calcium-signaling pathways.
PMCID: PMC4104200  PMID: 23044854
3.  A methodology to infer gene networks from spatial patterns of expression - An application to fluorescence in situ hybridization images 
Molecular bioSystems  2013;9(7):1926-1930.
The proper functional development of a multicellular organism depends on an intricate network of interacting genes that are expressed in accurate temporal and spatial patterns across different tissues. Complex inhibitory and excitatory interactions among genes control the territorial differences that explain specialized cell fates, embryo polarization and tissues architecture in metazoan. Given the nature of the regulatory gene networks, similarity of expression patterns can identify genes and with similar roles. The inference and analysis of the gene interaction networks through complex networks tools can reveal important aspects of the biological system modeled. Here we suggest an image analysis pipeline to quantify co-localization patterns in in situ hybridization images of Drosophila embryos and, based on these patterns, infer gene networks. We analyze the spatial dispersion of the gene expression and show the gene interaction networks for different developmental stages. Our results suggest that the inference of developmental networks based on spatial expression data are biologically relevant and represents a potential tool for the understanding of animal development.
PMCID: PMC4099485  PMID: 23591446
4.  Global signatures of protein and mRNA expression levels† 
Molecular bioSystems  2009;5(12):1512-1526.
Cellular states are determined by differential expression of the cell’s proteins. The relationship between protein and mRNA expression levels informs about the combined outcomes of translation and protein degradation which are, in addition to transcription and mRNA stability, essential contributors to gene expression regulation. This review summarizes the state of knowledge about large-scale measurements of absolute protein and mRNA expression levels, and the degree of correlation between the two parameters. We summarize the information that can be derived from comparison of protein and mRNA expression levels and discuss how corresponding sequence characteristics suggest modes of regulation.
PMCID: PMC4089977  PMID: 20023718
5.  Regulation of protein-protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes 
Molecular bioSystems  2013;9(7):1620-1626.
Phosphorylation offers a dynamic way to regulate protein activity, subcellular localization, and stability. The majority of signaling pathways involve an extensive set of protein-protein interactions, and phosphorylation is widely used to regulate protein-protein binding by affecting the stability, kinetics and specificity of interactions. Previously it was found that phosphorylation sites tend to be located on protein-protein binding interfaces and may orthosterically modulate the strength of interactions. Here we studied the effect of phosphorylation on protein binding in relation to intrinsic disorder for different types of human protein complexes with known structure of binding interface. Our results suggest that the processes of phosphorylation, binding and disorder-order transitions are coupled to each other, with about one quarter of all disordered interface Ser/Thr/Tyr sites being phosphorylated. Namely, residue site disorder and interfacial states significantly affect the phosphorylation of serine and to a lesser extent of threonine. Tyrosine phosphorylation might not be directly associated with binding through disorder, and is often observed in ordered interface regions which are not predicted to be disordered in the unbound state. We analyze possible mechanisms of how phosphorylation might regulate protein-protein binding via intrinsic disorder, and specifically focus on how phosphorylation could prevent disorder-order transitions upon binding.
PMCID: PMC3665713  PMID: 23364837
6.  Transcripts for combined synthetic microRNA and gene delivery 
Molecular bioSystems  2013;9(7):1919-1925.
MicroRNAs (miRNAs) are a class of short noncoding RNAs which are endogenously expressed in many organisms and regulate gene expression by binding to messenger RNA (mRNA). MiRNAs are either produced from their independent transcription units in intergenic regions or lie in intragenic regions. Intragenic miRNAs and their host mRNAs are produced from the same transcript by the microprocessor and the spliceosome protein complex respectively. The details and exact timing of the processing events have implications to downstream RNA interference (RNAi) efficiency and mRNA stability. Here we engineer and study in mammalian cells a range of synthetic intragenic miRNAs co-expressed with their host genes. Furthermore, we study transcripts which carry the target of the miRNA, thereby emulating a common regulation mechanism. We perform fluorescence microscopy and flow cytometry to characterize the engineered transcripts and investigate the properties of the underlying biological processes. Our results shed additional light on miRNA and pre-mRNA processing but importantly provide insight towards engineering transcripts customized for combined delivery and use in synthetic gene circuits.
PMCID: PMC3674133  PMID: 23579254
7.  Mechanism of Action-Based Classification of Antibiotics using High-Content Bacterial Image Analysis 
Molecular bioSystems  2013;9(7):1837-1848.
Image-based screening has become a mature field over the past decade, largely due to the detailed information that can be obtained about compound mode of action by considering the phenotypic effects of test compounds on cellular morphology. However, very few examples exist of extensions of this approach to bacterial targets. We now report the first high-throughput, high-content platform for the prediction of antibiotic modes of action using image-based screening. This approach employs a unique feature segmentation and extraction protocol to quantify key size and shape metrics of bacterial cells over a range of compound concentrations, and matches the trajectories of these metrics to those of training set compounds of known molecular target to predict the test compound's mode of action. This approach has been used to successfully predict the modes of action of a panel of known antibiotics, and has been extended to the evaluation of natural products libraries for the de novo prediction of compound function directly from primary screening data.
PMCID: PMC3674180  PMID: 23609915
8.  Exploring higher-order EGFR oligomerisation and phosphorylation—a combined experimental and theoretical approach†‡ 
Molecular bioSystems  2013;9(7):1849-1863.
The epidermal growth factor receptor (EGFR) kinase is generally considered to be activated by either ligand-induced dimerisation or a ligand-induced conformational change within pre-formed dimers. Ligand-induced higher-order EGFR oligomerisation or clustering has been reported but it is not clear how EGFR oligomers, as distinct from EGFR dimers, influence signaling outputs. To address this question, we combined measures of receptor clustering (microscopy; image correlation spectroscopy) and phosphorylation (Western blots) with modelling of mass-action chemical kinetics. A stable BaF/3 cell-line that contains a high proportion (>90%) of inactive dimers of EGFR-eGFP but no secreted ligand and no other detectable ErbB receptors was used as the model cell system. EGF at concentrations of greater than 1 nM was found to cluster EGFR-eGFP dimers into higher-order complexes and cause parallel increases in EGFR phosphorylation. The kinetics of EGFR clustering and phosphorylation were both rapid, plateauing within 2 minutes after stimulation with 30 nM EGF. A rule-based model was formulated to interpret the data. This model took into account ligand binding, ligand-induced conformational changes in the cytosolic tail, monomer-dimer-trimer-tetramer transitions via ectodomain- and kinase-mediated interactions, and phosphorylation. The model predicts that cyclic EGFR tetramers are the predominant phosphorylated species, in which activated receptor dimers adopt a cyclic side-by-side orientation, and that receptor kinase activation is stabilised by the intramolecular interactions responsible for cyclic tetramerization.
PMCID: PMC3698845  PMID: 23629589
EGF receptor; Rule-based modelling; Receptor clustering; Image correlation spectroscopy; Signalling
9.  Identification of Calcium binding sites on calsequestrin 1 and its implications to polymerization 
Molecular bioSystems  2013;9(7):1949-1957.
Biophysical studies have shown that each molecule of calsequestrin 1 (CASQ1) can bind about 70–80 Ca2+ ions. However, the nature of Ca2+-binding sites has not yet been fully characterized. In this study, we employed in-silico approaches to identify the Ca2+ binding sites and to understand the molecular basis of CASQ1-Ca2+ recognition. We built the protein model by extracting the atomic coordinates for the back-to-back dimeric unit from the recently solved hexameric CASQ1 structure (PDB id: 3UOM) and adding the missing C-terminal residues (aa350–364). Using this model we performed extensive 30 ns molecular dynamics simulations exposed to wide range of Ca2+ concentrations ([Ca2+]). Our results show that the Ca2+-binding sites on CASQ1 differ both in affinity and geometry. The high affinity Ca2+-binding sites share a similar geometry and interestingly, majority of them were found to be induced by increased [Ca2+]. We also found that the system undergoes maximal Ca2+-binding to the CAS (consecutive aspartate stretch at the C-terminus) before the rest of the CASQ1 surface becomes saturated. Simulated data shows that the CASQ1 back-to-back stacking is progressively stabilized by emergence of an increasing number of hydrophobic interactions with increasing [Ca2+]. Further, this study shows that the CAS domain assumes a compact structure with increase in Ca2+ binding, which suggests that the CAS domain might function as a Ca2+-sensor that may be a novel structural motif to sense metal. We propose the term “Dn-motif” for the CAS domain.
PMCID: PMC3719380  PMID: 23629537
calcium binding protein; molecular dynamics; entropy; electrostatic interaction; structural motif
10.  Exploring mechanisms of human disease through structurally resolved protein interactome networks 
Molecular bioSystems  2014;10(1):9-17.
The study of the molecular basis of human disease has gained increasing attention over the past decade. With significant improvements in sequencing effciency and throughput, a wealth of genotypic data has become available. However the translation of this information into concrete advances in diagnostic and clinical setups has proved far more challenging. Two major reasons for this are the lack of functional annotation for genomic variants and the complex nature of genotype-to-phenotype relationships. One fundamental approach to bypass these issues is to examine the effects of genetic variation at the level of proteins as they are directly involved in carrying out biological functions. Within the cell, proteins function by interacting with other proteins as a part of an underlying interactome network. This network can be determined using interactome mapping – a combination of high-throughput experimental toolkits and curation from small-scale studies. Integrating structural information from co-crystals with the network allows generation of a structurally resolved network. Within the context of this network, the structural principles of disease mutations can be examined and used to generate reliable mechanistic hypotheses regarding disease pathogenesis.
PMCID: PMC4061614  PMID: 24096645
11.  A bird’s-eye view of post-translational modifications in the spliceosome and their roles in spliceosome dynamics† 
Molecular bioSystems  2010;6(11):2093-2102.
Pre-mRNA splicing, the removal of noncoding intron sequences from the pre-mRNA, is a critical reaction in eukaryotic gene expression. Pre-mRNA splicing is carried out by a remarkable macromolecular machine, the spliceosome, which undergoes dynamic rearrangements of its RNA and protein components to assemble its catalytic center. While significant progress has been made in describing the “moving parts” of this machine, the mechanisms by which spliceosomal proteins mediate the ordered rearrangements within the spliceosome remain elusive. Here we explore recent evidence from proteomics studies revealing extensive post-translational modification of splicing factors. While the functional significance of most of these modifications remains to be characterized, we describe recent studies in which the roles of specific post-translational modifications of splicing factors have been characterized. These examples illustrate the importance of post-translational modifications in spliceosome dynamics
PMCID: PMC4065859  PMID: 20672149
12.  Salmonella Modulates Metabolism during Growth under Conditions that Induce Expression of Virulence Genes 
Molecular bioSystems  2013;9(6):1522-1534.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake.
PMCID: PMC3665296  PMID: 23559334
13.  Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30† 
Molecular bioSystems  2013;9(12):2992-3000.
Lignocellulosic biomass has great promise as a highly abundant and renewable source for the production of biofuels. However, the recalcitrant nature of lignocellulose toward hydrolysis into soluble sugars remains a significant challenge to harnessing the potential of this source of bioenergy. A primary method for deconstructing lignocellulose is via chemical treatments, high temperatures, and hydrolytic enzyme cocktails, many of which are derived from the fungus Trichoderma reesei. Herein, we use an activity-based probe for glycoside hydrolases to rapidly identify optimal conditions for maximum enzymatic lignocellulose deconstruction. We also demonstrate that subtle changes to enzyme composition and activity in various strains of T. reesei can be readily characterized by our probe approach. The approach also permits multimodal measurements, including fluorescent gel-based analysis of activity in response to varied conditions and treatments, and mass spectrometry-based quantitative identification of labelled proteins. We demonstrate the promise this probe approach holds to facilitate rapid production of enzyme cocktails for high-efficiency lignocellulose deconstruction to accommodate high-yield biofuel production.
PMCID: PMC4031913  PMID: 24121482
14.  Replisome dynamics and use of DNA trombone loops to bypass replication blocks†,‡ 
Molecular bioSystems  2008;4(11):1075-1084.
Replisomes are dynamic multiprotein machines capable of simultaneously replicating both strands of the DNA duplex. This review focuses on the structure and function of the E. coli replisome, many features of which generalize to other bacteria and eukaryotic cells. For example, the bacterial replisome utilizes clamps and clamp loaders to coordinate the actions required of the trombone model of lagging strand synthesis made famous by Bruce Alberts. All cells contain clamps and clamp loaders and this review summarizes their structure and function. Clamp loaders are pentameric spirals that bind DNA in a structure specific fashion and thread it through the ring shaped clamp. The recent structure of the E. coli β clamp in complex with primed DNA has implications for how multiple polymerases function on sliding clamps and how the primed DNA template is exchanged between them. Recent studies reveal a remarkable fluidity in replisome function that enables it to bypass template lesions on either DNA strand. During these processes the polymerases within the replisome functionally uncouple from one another. Mechanistic processes that underlie these actions may involve DNA looping, similar to the trombone loops that mediate the lagging strand Okazaki fragment synthesis cycle.
PMCID: PMC4011192  PMID: 18931783
15.  Computational models for large-scale simulations of facilitated diffusion 
Molecular bioSystems  2012;8(11):2815-2827.
The binding of site-specific transcription factors to their genomic target sites is a key step in gene regulation. While the genome is huge, transcription factors belong to the least abundant protein classes in the cell. It is therefore fascinating how short the time frame is that they require to home in on their target sites. The underlying search mechanism is called facilitated diffusion and assumes a combination of three-dimensional diffusion in the space around the DNA combined with one-dimensional random walk on it. In this review, we present the current understanding of the facilitated diffusion mechanism and identify questions that lack a clear or detailed answer. One way to investigate these questions is through stochastic simulation and, in this manuscript, we support the idea that such simulations are able to address them. Finally, we review which biological parameters need to be included in such computational models in order to obtain a detailed representation of the actual process.
PMCID: PMC4007627  PMID: 22892851
16.  Carbohydrate-containing Triton X-100 Analogues for Membrane Protein Solubilization and Stabilization 
Molecular bioSystems  2013;9(4):626-629.
Membrane protein manipulation is a challenging task owing to limited tertiary and quaternary structural stability once the protein has been removed from a lipid bilayer. Such instability can be overcome by embedding membrane proteins in detergent micelles formed from amphiphiles with carefully tuned properties. This study introduces a class of easy-to-synthesize amphiphiles, which are designated CGT (Chae’s Glyco-Triton) detergents. Some of the agents are well suited for membrane protein solubilization and stabilization.
PMCID: PMC3593792  PMID: 23377371
17.  Protein intrinsic disorder in the acetylome of intracellular and extracellular Toxoplasma gondii 
Molecular bioSystems  2013;9(4):645-657.
Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa, which includes a number of species of medical and veterinary importance. Inhibitors of lysine deacetylases (KDACs) exhibit potent antiparasitic activity, suggesting that interference with lysine acetylation pathways hold promise for future drug targeting. Using high resolution LC-MS/MS to identify parasite peptides enriched by immunopurification with acetyl-lysine antibody, we recently produced an acetylome of the proliferative intracellular stage of Toxoplasma. In this study, we used similar approaches to greatly expand the Toxoplasma acetylome by identifying acetylated proteins in non-replicating extracellular tachyzoites. The functional breakdown of acetylated proteins in extracellular parasites is similar to intracellular parasites, with an enrichment of proteins involved in metabolism, translation, and chromatin biology. Altogether, we have now detected over 700 acetylation sites on a wide variety of parasite proteins of diverse function in multiple subcellular compartments. We found 96 proteins uniquely acetylated in intracellular parasites, 216 uniquely acetylated in extracellular parasites, and 177 proteins acetylated in both states. Our findings suggest that dramatic changes occur at the proteomic level as tachyzoites transition from the intracellular to extracellular environment, similar to reports documenting significant changes in gene expression during this transition. The expanded dataset also allowed a thorough analysis of the degree of protein intrinsic disorder surrounding lysine residues targeted for this post-translational modification. These analyses indicate that acetylated lysines in proteins from extracellular and intracellular tachyzoites are largely located within similar local environments, and that lysine acetylation preferentially occurs in intrinsically disordered or flexible regions.
PMCID: PMC3594623  PMID: 23403842
parasite; proteomics; acetylation; lysine; Apicomplexa; tachyzoite
18.  Metabolomic Changes in Gastrointestinal Tissues after Whole Body Radiation in a Murine Model 
Molecular bioSystems  2013;9(4):723-731.
Exposure to ionizing radiation (IR) elicits a set of complex biological responses involving gene expression and protein turnover that ultimately manifest as dysregulation of metabolic processes representing the cellular phenotype. Although radiation biomarkers have been reported in urine and serum, they are not informative about IR mediated tissue or organ specific injury. In the present study we report IR induced metabolic changes in gastrointestinal (GI) tissue of CD2F1 mice using ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry. Post-radiation GI injury is a critical determinant of survival after exposure to IR. Our results show a distinct dose and time dependent response to GI tissue injury.
PMCID: PMC3601576  PMID: 23403731
19.  Discrimination of soluble and aggregation-prone proteins based on sequence information 
Molecular bioSystems  2013;9(4):806-811.
Understanding the factors governing protein solubility is a key to grasp the mechanisms of protein solubility and may provide insight into protein aggregation and misfolding related diseases such as Alzheimer’s disease. In this work, we attempt to identify factors important to protein solubility using feature selection. Firstly, we calculate 1438 features including physicochemical properties and statistics for each protein. Random Forest algorithm is used to select the most informative and the minimal subset of features based on their predictive performance. A predictive model is built based on 17 selected features. Compared with previous models, our model achieves better performance with a sensitivity of 0.82, specificity 0.85, ACC 0.84, AUC 0.91 and MCC 0.67. Furthermore, a model using redundancy-reduced dataset (sequence identity <= 30%) achieves the same performance as the model without redundancy reduction. Our results provide not only a reliable model for predicting protein solubility but also a list of features important to protein solubility. The predictive model is implemented as a freely available web application at
PMCID: PMC3627541  PMID: 23440081
Protein solubility; Aggregation; Random Forest; Classification; Feature selection
20.  Non-traditional roles of G protein-coupled receptors in basic cell biology 
Molecular bioSystems  2013;9(4):586-595.
G protein-coupled receptors (GPCR) are key signaling proteins that regulate how cells interact with their environments. Traditional signaling cascades involving GPCRs have been well described and are well established and very important clinical targets. With the development of more recent technologies, hints about the involvement of GPCRs in fundamental cell biological processes are beginning to emerge. In this review, we give a basic introduction to GPCR signaling and highlight some less well described roles of GPCRs, including in cell division and membrane trafficking, which may occur through canonical and non-canonical signaling pathways.
PMCID: PMC3628546  PMID: 23247090
21.  The Proteomic Response to Mutants of the Escherichia coli RNA Degradosome 
Molecular bioSystems  2013;9(4):750-757.
The Escherichia coli RNA degradosome recognizes and degrades RNA through the coordination of four main protein components, the endonuclease RNase E, the exonuclease PNPase, the RhlB helicase and the metabolic enzyme enolase. To help our understanding of the functions of the RNA degradosome, we quantified expression changes of >2,300 proteins by mass spectrometry based shotgun proteomics in E. coli strains deficient in rhlB, eno, pnp (which displays temperature sensitive growth), or rne(1-602) which encodes a C-terminal truncation mutant of RNaseE and is deficient in degradosome assembly. Global protein expression changes are most similar between the pnp and rhlB mutants, confirming the functional relationship between the genes. We observe down-regulation of protein chaperones including GroEL and DnaK (which associate with the degradosome), a decrease in translation related proteins in Δpnp, ΔrhlB and rne(1-602) cells, and a significant increase in the abundance of aminoacyl-tRNA synthetases. Analysis of the observed proteomic changes point to a shared motif, CGCTGG, that may be associated with RNA degradosome targets. Further, our data provide information on the expression modulation of known degradosome-associated proteins, such as DeaD and RNase G, as well as other RNA helicases and RNases – suggesting or confirming functional complementarity in some cases. Taken together, our results emphasize the role of the RNA degradosome in the modulation of the bacterial proteome and provide the first large-scale proteomic description of the response to perturbation of this major pathway of RNA degradation.
PMCID: PMC3709862  PMID: 23403814
22.  A synthetic heparan sulfate oligosaccharide library reveals the novel enzymatic action of d-glucosaminyl 3-O-sulfotransferase-3a† 
Molecular bioSystems  2011;8(2):609-614.
Heparan sulfate (HS) glucosaminyl 3-O-sulfotranferases sulfate the C3-hydroxyl group of certain glucosamine residues on heparan sulfate. Six different 3-OST isoforms exist, each of which can sulfate very distinct glucosamine residues within the HS chain. Among these isoforms, 3-OST1 has been shown to play a role in generating ATIII-binding HS anticoagulants whereas 3-OST2, 3-OST3, 3-OST4 and 3OST-6 have been shown to play a vital role in generating gD-binding HS chains that permit the entry of herpes simplex virus type 1 into cells. 3-OST5 has been found to generate both ATIII- and gD-binding HS motifs. Previous studies have examined the substrate specificities of all the 3-OST isoforms using HS polysaccharides. However, very few studies have examined the contribution of the epimer configuration of neighboring uronic acid residues next to the target site to 3-OST action. In this study, we utilized a well-defined synthetic oligosaccharide library to examine the substrate specificity of 3-OST3a and compared it to 3-OST1. We found that both 3-OST1 and 3-OST3a preferentially sulfate the 6-O-sulfated, N-sulfoglucosamine when an adjacent iduronyl residue is located to its reducing side. On the other hand, 2-O-sulfation of this uronyl residue can inhibit the action of 3-OST3a on the target residue. The results reveal novel substrate sites for the enzyme actions of 3-OST3a. It is also evident that both these enzymes have promiscuous and overlapping actions that are differentially regulated by iduronyl 2-O-sulfation.
PMCID: PMC3970252  PMID: 22116385
23.  Optimality and thermodynamics determine the evolution of transcriptional regulatory networks† 
Molecular bioSystems  2011;8(2):511-530.
Transcriptional motifs are small regulatory interaction patterns that regulate biological functions in highly-interacting cellular networks. Recently, attempts have been made to explain the significance of transcriptional motifs through dynamic function. However, fundamental questions remain unanswered. Why are certain transcriptional motifs with similar dynamic function abundant while others occur rarely? What are the criteria for topological generalization of these motifs into complex networks? Here, we present a novel paradigm that combines non-equilibrium thermodynamics with multiobjective-optimality for network analysis. We found that energetic cost, defined herein as specific dissipation energy, is minimal at the optimal environmental conditions and it correlates inversely with the abundance of the network motifs obtained experimentally for E. coli and S. cerevisiae. This yields evidence that dissipative energetics is the underlying criteria used during evolution for motif selection and that biological systems during transcription tend towards evolutionary selection of subgraphs which produces minimum specific heat dissipation under optimal conditions, thereby explaining the abundance/rare occurrence of some motifs. We show that although certain motifs had similar dynamical functionality, they had significantly different energetic cost, thus explaining the abundance/rare occurrence of these motifs. The presented insights may establish global thermodynamic analysis as a backbone in designing and understanding complex networks systems, such as metabolic and protein interaction networks.
PMCID: PMC3964374  PMID: 22076617
24.  Predicting cancer drug mechanisms of action using molecular network signatures† 
Molecular bioSystems  2013;9(7):1604-1619.
Molecular signatures are a powerful approach to characterize novel small molecules and derivatized small molecule libraries. While new experimental techniques are being developed in diverse model systems, informatics approaches lag behind these exciting advances. We propose an analysis pipeline for signature based drug annotation. We develop an integrated strategy, utilizing supervised and unsupervised learning methodologies that are bridged by network based statistics. Using this approach we can: 1, predict new examples of drug mechanisms that we trained our model upon; 2, identify “New” mechanisms of action that do not belong to drug categories that our model was trained upon; and 3, update our training sets with these “New” mechanisms and accurately predict entirely distinct examples from these new categories. Thus, not only does our strategy provide statistical generalization but it also offers biological generalization. Additionally, we show that our approach is applicable to diverse types of data, and that distinct biological mechanisms characterize its resolution of categories across different data types. As particular examples, we find that our predictive resolution of drug mechanisms from mRNA expression studies relies upon the analog measurement of a cell stress-related transcriptional rheostat along with a transcriptional representation of cell cycle state; whereas, in contrast, drug mechanism resolution from functional RNAi studies rely upon more dichotomous (e.g., either enhances or inhibits) association with cell death states. We believe that our approach can facilitate molecular signature-based drug mechanism understanding from different technology platforms and across diverse biological phenomena.
PMCID: PMC3945388  PMID: 23287973
25.  Fluorogenic Label to Quantify the Cytosolic Delivery of Macromolecules† 
Molecular bioSystems  2013;9(3):339-342.
The delivery of a macromolecule to the cytosol of human cells is assessed by using a pendant di-O-glycosylated derivative of fluorescein. Its fluorescence is unmasked by Escherichia coli β-galactosidase installed in the cytosol. Background is diminished by using RNAi to suppress the expression of GLB1, which encodes a lysosomal β-galactosidase. This strategy was used to quantify the cytosolic entry of a highly cationic protein, ribonuclease A.
PMCID: PMC3588161  PMID: 23340874

Results 1-25 (197)