PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (154)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  New Biofunctional Loading of Natural Antimicrobial Agent in Biodegradable Polymeric Films for Biomedical Applications 
The study focuses on the development of novel Aloe vera based polymeric composite films and antimicrobial suture coatings. Polyvinyl alcohol (PVA), a synthetic biocompatible and biodegradable polymer, was combined with Aloe vera, a natural herb used for soothing burning effects and cosmetic purposes. The properties of these two materials were combined together to get additional benefits such as wound healing and prevention of surgical site infections. PVA and Aloe vera were mixed in a fixed quantity to produce polymer based films. The films were screened for antibacterial and antifungal activity against bacterial (E. coli, P. aeruginosa) and fungal strains (Aspergillus flavus and Aspergillus tubingensis) screened. Aloe vera based PVA films showed antimicrobial activity against all the strains; the lowest Aloe vera concentration (5%) showed the highest activity against all the strains. In vitro degradation and release profile of these films was also evaluated. The coating for sutures was prepared, in vitro antibacterial tests of these coated sutures were carried out, and later on in vivo studies of these coated sutures were also performed. The results showed that sutures coated with Aloe vera/PVA coating solution have antibacterial effects and thus have the potential to be used in the prevention of surgical site infections and Aloe vera/PVA based films have the potential to be used for wound healing purposes.
doi:10.1155/2016/6964938
PMCID: PMC5124657  PMID: 27965710
2.  Fracture Resistance of Endodontically Treated Maxillary Premolars Restored by Various Direct Filling Materials: An In Vitro Study 
The aim of this study is to compare the effect of various restorative materials on fracture resistance in maxillary premolars. Premolars (n = 64) with no restorations or cracks were selected. MOD cavities were prepared considering the buccolingual width to be equal to half of the intercuspal distance. The specimens were randomly divided into 8 groups, 8 specimens each: group A intact teeth, group B unfilled cavity, group C composite made by oblique layering technique, group D composite with 2 mm cusp coverage, group E bulk-filled posterior composite, group F glass-ionomer, group G amalgam, and group H composite with proximal boxes. The specimens were subjected to an axial compression load with the mean values of fracture resistance in group A: 1289 N, group B: 181.75 N, group C: 445.38 N, group D: 645.88 N, group E: 355.13 N, group F: 352.00 N, group G: 191.38 N, and group H: 572.00 N. There was no significant difference between groups B and G, between C and D, E, and F, and between group D and H. All other measurements were statistically significant. We conclude that composite restoration with cusp coverage is the most ideal nonprosthetic solution for endodontically treated teeth. Cusp coverage increases the fracture resistance compared to the conventional cavity design.
doi:10.1155/2016/9138945
PMCID: PMC5021482  PMID: 27656212
3.  Silver Nanoparticles: Biosynthesis Using an ATCC Reference Strain of Pseudomonas aeruginosa and Activity as Broad Spectrum Clinical Antibacterial Agents 
Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using a Pseudomonas aeruginosa strain from a reference culture collection. A greenish culture supernatant of P. aeruginosa incubated at 37°C with a silver nitrate solution for 24 h changed to a yellowish brown color, indicating the formation of Ag-NPs, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. TEM analysis showed spherical and pseudospherical nanoparticles with a distributed size mainly between 25 and 45 nm, and the XRD pattern revealed the crystalline nature of Ag-NPs. Also it provides an evaluation of the antimicrobial activity of the biosynthesized Ag-NPs against human pathogenic and opportunistic microorganisms, namely, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Proteus mirabilis, Acinetobacter baumannii, Escherichia coli, P. aeruginosa, and Klebsiella pneumonia. Ag-NPs were found to be bioactive at picomolar concentration levels showing bactericidal effects against both Gram-positive and Gram-negative bacterial strains. This work demonstrates the first helpful use of biosynthesized Ag-NPs as broad spectrum bactericidal agents for clinical strains of pathogenic multidrug-resistant bacteria such as methicillin-resistant S. aureus, A. baumannii, and E. coli. In addition, these Ag-NPs showed negligible cytotoxic effect in human neutrophils suggesting low toxicity to the host.
doi:10.1155/2016/5971047
PMCID: PMC4906205  PMID: 27340405
4.  Shear Bond Strengths between Three Different Yttria-Stabilized Zirconia Dental Materials and Veneering Ceramic and Their Susceptibility to Autoclave Induced Low-Temperature Degradation 
A study was undertaken to evaluate the effect of artificial aging through steam and thermal treatment as influencing the shear bond strength between three different commercially available zirconia core materials, namely, Upcera, Ziecon, and Cercon, layered with VITA VM9 veneering ceramic using Universal Testing Machine. The mode of failure between zirconia and ceramic was further analyzed as adhesive, cohesive, or mixed using stereomicroscope. X-ray diffraction and SEM (scanning electron microscope) analysis were done to estimate the phase transformation (m-phase fraction) and surface grain size of zirconia particles, respectively. The purpose of this study was to simulate the clinical environment by artificial aging through steam and thermal treatment so as the clinical function and nature of the bond between zirconia and veneering material as in a clinical trial of 15 years could be evaluated.
doi:10.1155/2016/9658689
PMCID: PMC4880681  PMID: 27293439
5.  Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells 
Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by the MTT assay and by evaluation of morphological changes in cultured RAW 264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure. The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadium-loaded membranes proved to be a better substratum than C0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation). In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering.
doi:10.1155/2016/1486350
PMCID: PMC4879236  PMID: 27293438
6.  Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin 
RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery.
doi:10.1155/2016/8043983
PMCID: PMC4875998  PMID: 27242902
7.  In Vitro Evaluation of Bacterial Leakage at Implant-Abutment Connection: An 11-Degree Morse Taper Compared to a Butt Joint Connection 
Background and Aim. The geometry of implant-abutment interface (IAI) affects the risk of bacterial leakage and invasion into the internal parts of the implant. The aim of this study was to compare the bacterial leakage of an 11-degree Morse taper IAI with that of a butt joint connection. Materials and Methods. Two implants systems were tested (n = 10 per group): CSM (submerged) and TBR (connect). The deepest inner parts of the implants were inoculated with 2 μL of Streptococcus mutans suspension with a concentration of 108 CFU/mL. The abutments were tightened on the implants. The specimens were stored in the incubator at a temperature of 37°C for 14 days and the penetration of the bacterium in the surrounding area was determined by the observation of the solution turbidity and comparison with control specimens. Kaplan-Meier survival curve was traced for the estimation of bacterial leakage and the results between two groups of implants were statistically analyzed by chi-square test. Results. No case of the implant system with the internal conical connection design revealed bacterial leakage in 14 days and no turbidity of the solution was reported for it. In the system with butt joint implant-abutment connection, 1 case showed leakage on the third day, 1 case on the eighth day, and 5 cases on the 13th day. In total, 7 (70%) cases showed bacterial leakage in this system. Significant differences were found between the two groups of implants based on the incidence of bacterial leakage (p < 0.05). Conclusion. The 11-degree Morse taper demonstrated better resistance to microbial leakage than butt joint connection.
doi:10.1155/2016/8527849
PMCID: PMC4868898  PMID: 27242903
8.  Bioceramic-Based Root Canal Sealers: A Review 
Bioceramic-based root canal sealers are considered to be an advantageous technology in endodontics. The aim of this review was to consider laboratory experiments and clinical studies of these sealers. An extensive search of the endodontic literature was made to identify publications related to bioceramic-based root canal sealers. The outcome of laboratory and clinical studies on the biological and physical properties of bioceramic-based sealers along with comparative studies with other sealers was assessed. Several studies were evaluated covering different properties of bioceramic-based sealers including physical properties, biocompatibility, sealing ability, adhesion, solubility, and antibacterial efficacy. Bioceramic-based sealers were found to be biocompatible and comparable to other commercial sealers. The clinical outcomes associated with the use of bioceramic-based root canal sealers are not established in the literature.
doi:10.1155/2016/9753210
PMCID: PMC4868912  PMID: 27242904
9.  Developing a Suitable Model for Water Uptake for Biodegradable Polymers Using Small Training Sets 
Prediction of the dynamic properties of water uptake across polymer libraries can accelerate polymer selection for a specific application. We first built semiempirical models using Artificial Neural Networks and all water uptake data, as individual input. These models give very good correlations (R2 > 0.78 for test set) but very low accuracy on cross-validation sets (less than 19% of experimental points within experimental error). Instead, using consolidated parameters like equilibrium water uptake a good model is obtained (R2 = 0.78 for test set), with accurate predictions for 50% of tested polymers. The semiempirical model was applied to the 56-polymer library of L-tyrosine-derived polyarylates, identifying groups of polymers that are likely to satisfy design criteria for water uptake. This research demonstrates that a surrogate modeling effort can reduce the number of polymers that must be synthesized and characterized to identify an appropriate polymer that meets certain performance criteria.
doi:10.1155/2016/6273414
PMCID: PMC4856915  PMID: 27200091
10.  Oxidative Nanopatterning of Titanium Surface Influences mRNA and MicroRNA Expression in Human Alveolar Bone Osteoblastic Cells 
Titanium implants have been extensively used in orthopedic and dental applications. It is well known that micro- and nanoscale surface features of biomaterials affect cellular events that control implant-host tissue interactions. To improve our understanding of how multiscale surface features affect cell behavior, we used microarrays to evaluate the transcriptional profile of osteoblastic cells from human alveolar bone cultured on engineered titanium surfaces, exhibiting the following topographies: nanotexture (N), nano+submicrotexture (NS), and rough microtexture (MR), obtained by modulating experimental parameters (temperature and solution composition) of a simple yet efficient chemical treatment with a H2SO4/H2O2 solution. Biochemical assays showed that cell culture proliferation augmented after 10 days, and cell viability increased gradually over 14 days. Among the treated surfaces, we observed an increase of alkaline phosphatase activity as a function of the surface texture, with higher activity shown by cells adhering onto nanotextured surfaces. Nevertheless, the rough microtexture group showed higher amounts of calcium than nanotextured group. Microarray data showed differential expression of 716 mRNAs and 32 microRNAs with functions associated with osteogenesis. Results suggest that oxidative nanopatterning of titanium surfaces induces changes in the metabolism of osteoblastic cells and contribute to the explanation of the mechanisms that control cell responses to micro- and nanoengineered surfaces.
doi:10.1155/2016/9169371
PMCID: PMC4856946  PMID: 27200092
11.  Cuspal Displacement Induced by Bulk Fill Resin Composite Polymerization: Biomechanical Evaluation Using Fiber Bragg Grating Sensors 
Polymerization shrinkage is a major concern to the clinical success of direct composite resin restorations. The aim of this study was to compare the effect of polymerization shrinkage strain of two resin composites on cuspal movement based on the use of fiber Bragg grating (FBG) sensors. Twenty standardized Class II cavities prepared in upper third molars were allocated into two groups (n = 10). Restorations involved the bulk fill placement of conventional microhybrid resin composite (Esthet•X® HD, Dentsply DeTrey) (Group 1) or flowable “low-shrinkage” resin composite (SDR™, Dentsply DeTrey) (Group 2). Two FBG sensors were used per restoration for real-time measurement of cuspal linear deformation and temperature variation. Group comparisons were determined using ANCOVA (α = 0.05) considering temperature as the covariate. A statistically significant correlation between cuspal deflection, time, and material was observed (p < 0.01). Cuspal deflection reached 8.8 μm (0.23%) and 7.8 μm (0.20%) in Groups 1 and 2, respectively. When used with bulk fill technique, flowable resin composite SDR™ induced significantly less cuspal deflection than the conventional resin composite Esthet•X® HD (p = 0.015) and presented a smoother curve slope during the polymerization. FBG sensors appear to be a valid tool for accurate real-time monitoring of cuspal deformation.
doi:10.1155/2016/7134283
PMCID: PMC4844892  PMID: 27190517
12.  Preparation Methods for Improving PEEK's Bioactivity for Orthopedic and Dental Application: A Review 
There is an increased interest in the use of polyether ether ketone (PEEK) for orthopedic and dental implant applications due to its elastic modulus close to that of bone, biocompatibility, and its radiolucent properties. However, PEEK is still categorized as bioinert due to its low integration with surrounding tissues. Many studies have reported on methods to increase the bioactivity of PEEK, but there is still one-preparation method for preparing bioactive PEEK implant where the produced implant with desirable mechanical and bioactivity properties is required. The aim of this review is to present the progress of the preparation methods for improvement of the bioactivity of PEEK and to discuss the strengths and weaknesses of the existing methods.
doi:10.1155/2016/8202653
PMCID: PMC4834406  PMID: 27127513
13.  The Difference of Structural State and Deformation Behavior between Teenage and Mature Human Dentin 
Objective. The cause of considerable elasticity and plasticity of human dentin is discussed in the relationship with its microstructure. Methods. Structural state of teenage and mature human dentin is examined by using XRD and TEM techniques, and their deformation behavior under compression is studied as well. Result. XRD study has shown that crystallographic type of calcium hydroxyapatite in human dentin (calcium hydrogen phosphate hydroxide Ca9HPO4(PO4)5OH; Space Group P63/m (176); a = 9,441 A; c = 6,881 A; c/a = 0,729; Crystallite (Scherrer) 200 A) is the same for these age groups. In both cases, dentin matrix is X-ray amorphous. According to TEM examination, there are amorphous and ultrafine grain phases in teenage and mature dentin. Mature dentin is stronger on about 20% than teenage dentin, while teenage dentin is more elastic on about 20% but is less plastic on about 15% than mature dentin. Conclusion. The amorphous phase is dominant in teenage dentin, whereas the ultrafine grain phase becomes dominant in mature dentin. Mechanical properties of human dentin under compression depend on its structural state, too.
doi:10.1155/2016/6073051
PMCID: PMC4771909  PMID: 26989416
14.  Sol-Gel Derived Mg-Based Ceramic Scaffolds Doped with Zinc or Copper Ions: Preliminary Results on Their Synthesis, Characterization, and Biocompatibility 
Glass-ceramic scaffolds containing Mg have shown recently the potential to enhance the proliferation, differentiation, and biomineralization of stem cells in vitro, property that makes them promising candidates for dental tissue regeneration. An additional property of a scaffold aimed at dental tissue regeneration is to protect the regeneration process against oral bacteria penetration. In this respect, novel bioactive scaffolds containing Mg2+ and Cu2+ or Zn2+, ions known for their antimicrobial properties, were synthesized by the foam replica technique and tested regarding their bioactive response in SBF, mechanical properties, degradation, and porosity. Finally their ability to support the attachment and long-term proliferation of Dental Pulp Stem Cells (DPSCs) was also evaluated. The results showed that conversely to their bioactive response in SBF solution, Zn-doped scaffolds proved to respond adequately regarding their mechanical strength and to be efficient regarding their biological response, in comparison to Cu-doped scaffolds, which makes them promising candidates for targeted dental stem cell odontogenic differentiation and calcified dental tissue engineering.
doi:10.1155/2016/3858301
PMCID: PMC4769780  PMID: 26981124
15.  Synthesis and Characterization of Chitosan Nanoaggregates from Gladius of Uroteuthis duvauceli 
We report the synthesis, characterization, and biological properties of chitosan nanoaggregates from gladius of squid, Uroteuthis duvauceli. β-Chitin extracted from gladius was deacetylated to chitosan and further reduced to nanosize using ionic gelation process. The morphology and occurrence of chitosan nanoaggregates (CSNA) were observed using transmission electron microscopy (TEM). The degree of deacetylation (DD%) calculated from Fourier transform infrared (FTIR) spectrum showed high value (~94 ± 1.25%) for chitosan. The CSNA depicts low molecular weight, stable positive zeta potential, and less ash and moisture content with high water and fat binding capacity. The antimicrobial activity was tested against pathogenic microorganisms, which depicted significant rate of inhibition against Staphylococcus aureus and Escherichia coli due to high cellular uptake. The antioxidant analysis for CSNA demonstrated high reducing power and scavenging activity towards superoxide radicals compared with the commercially available chitosan. Furthermore, nanoaggregates exhibited low cytotoxic behavior in biological in vitro tests performed using cervical cancer cell line. These results indicate that chitosan nanoaggregates synthesized from waste gladius will be highly efficient and safe candidate for biological applications as food packing film, drug carrier, and tissue engineering.
doi:10.1155/2016/5379424
PMCID: PMC4764718  PMID: 26977152
16.  Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time 
Nutrient conduit networks can be introduced within the Polyethylene Glycol Diacrylate (PEGDA) tissue construct to enable cells to survive in the scaffold. Nutrient conduit networks can be created on PEGDA by macrochannel to nanochannel fabrication techniques. Such networks can influence the mechanical and cell activities of PEGDA scaffold. There is no study conducted to evaluate the effect of nutrient conduit networks on the maximum tensile stress and cell activities of the tissue scaffold. The study aimed to explore the influence of the network architecture on the maximum tensile stress of PEGDA scaffold and compared with the nonnetworked PEGDA scaffold. Our study found that there are 1.78 and 2.23 times decrease of maximum tensile stress due to the introduction of nutrient conduit networks to the PEGDA scaffold at 23°C and 37°C temperature conditions, respectively. This study also found statistically significant effect of network architecture, PI concentration, temperature, and wait time on the maximum failure stress of PEGDA samples (P value < 0.05). Cell viability results demonstrated that networked PEGDA hydrogels possessed increased viability compared to nonnetworked and decreased viability with increased photoinitiator concentrations. The results of this study can be used for the design of PEGDA scaffold with macrosize nutrient conduit network channels.
doi:10.1155/2016/3208312
PMCID: PMC4748092  PMID: 26925104
17.  Antibacterial Effect of Hydroalcoholic Extract of Punica granatum Linn. Petal on Common Oral Microorganisms 
Objectives. This study aimed to assess the effect of hydroalcoholic extract of Punica granatum Linn. (P. granatum) petal on Streptococcus sanguinis, Streptococcus mutans, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis. Materials and Methods. In this in vitro study, P. granatum extract was prepared using powdered petals and water-ethanol solvent. Antibacterial effect of the extract, chlorhexidine (CHX), and ampicillin was evaluated on brain heart infusion agar (BHIA) using the cup-plate method. By assessing the diameter of the growth inhibition zone, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extract were determined for the above-mentioned bacteria. Results. Hydroalcoholic extract of P. granatum petal had inhibitory effects on the proliferation of all five bacterial strains with maximum effect on S. mutans with MIC and MBC of 3.9 mg/mL. The largest growth inhibition zone diameter belonged to S. sanguinis and the smallest to E. faecalis. Ampicillin and CHX had the greatest inhibitory effect on S. sanguinis. Conclusions. Hydroalcoholic extract of P. granatum had a significant antibacterial effect on common oral bacterial pathogens with maximum effect on S. mutans, which is the main microorganism responsible for dental plaque and caries.
doi:10.1155/2016/8098943
PMCID: PMC4738741  PMID: 26884763
18.  Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering 
The aim of the present study was to prepare and characterize bioglass-natural biopolymer based composite scaffold and evaluate its bone regeneration ability. Bioactive glass nanoparticles (58S) in the size range of 20–30 nm were synthesized using sol-gel method. Porous scaffolds with varying bioglass composition from 10 to 30 wt% in chitosan, gelatin matrix were fabricated using the method of freeze drying of its slurry at 40 wt% solids loading. Samples were cross-linked with glutaraldehyde to obtain interconnected porous 3D microstructure with improved mechanical strength. The prepared scaffolds exhibited >80% porosity with a mean pore size range between 100 and 300 microns. Scaffold containing 30 wt% bioglass (GCB 30) showed a maximum compressive strength of 2.2 ± 0.1 MPa. Swelling and degradation studies showed that the scaffold had excellent properties of hydrophilicity and biodegradability. GCB 30 scaffold was shown to be noncytotoxic and supported mesenchymal stem cell attachment, proliferation, and differentiation as indicated by MTT assay and RUNX-2 expression. Higher cellular activity was observed in GCB 30 scaffold as compared to GCB 0 scaffold suggesting the fact that 58S bioglass nanoparticles addition into the scaffold promoted better cell adhesion, proliferation, and differentiation. Thus, the study showed that the developed composite scaffolds are potential candidates for regenerating damaged bone tissue.
doi:10.1155/2016/9825659
PMCID: PMC4738941  PMID: 26884764
19.  Integration of Rabbit Adipose Derived Mesenchymal Stem Cells to Hydroxyapatite Burr Hole Button Device for Bone Interface Regeneration 
Adipose Derived Mesenchymal Stem Cells, multipotent stem cells isolated from adipose tissue, present close resemblance to the natural in vivo milieu and microenvironment of bone tissue and hence widely used for in bone tissue engineering applications. The present study evaluates the compatibility of tissue engineered hydroxyapatite burr hole button device (HAP-BHB) seeded with Rabbit Adipose Derived Mesenchymal Stem Cells (ADMSCs). Cytotoxicity, oxidative stress response, apoptotic behavior, attachment, and adherence of adipose MSC seeded on the device were evaluated by scanning electron and confocal microscopy. The results of the MTT (3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium bromide) assay indicated that powdered device material was noncytotoxic up to 0.5 g/mL on cultured cells. It was also observed that oxidative stress related reactive oxygen species production and apoptosis on cell seeded device were similar to those of control (cells alone) except in 3-day period which showed increased reactive oxygen species generation. Further scanning electron and confocal microscopy indicated a uniform attachment of cells and viability up to 200 μm deep inside the device, respectively. Based on the results, it can be concluded that the in-house developed HAP-BHB device seeded with ADMSCs is nontoxic/safe compatible device for biomedical application and an attractive tissue engineered device for calvarial defect regeneration.
doi:10.1155/2016/1067857
PMCID: PMC4736387  PMID: 26880922
20.  Effect of Bleaching and Thermocycling on Resin-Enamel Bond Strength 
The aim of this study was to evaluate the effect of bleaching and thermocycling on microshear bond strength of bonded resin composites to enamel. Enamel slices were prepared from ninety-six intact human premolars and resin composite cylinders were bonded by using Adper Single Bond 2 + Filtek Z350 or Filtek silorane adhesive and resin composite. Each essential group was randomly subdivided to two subgroups: control and bleaching. In bleaching group, 35% hydrogen peroxide was applied on samples. Thermocycling procedure was conducted between 5°C and 55°C, for 3.000 cycles on the half of each subgroup specimen. Then microshear bond strength was tested. Methacrylate-based resin composite had higher bond strength than silorane-based one. The meyhacrylate-based group without bleaching along with thermocycling showed the most bond strength, while bleaching with 35% carbamide peroxide on silorane-based group without thermocycling showed the least microshear bond strength. Bleaching caused a significant degradation on shear bond strength of silorane-based resin composites that bonded using self-etch adhesive resin systems.
doi:10.1155/2015/921425
PMCID: PMC4709641  PMID: 26839550
21.  Amnion and Chorion Membranes: Potential Stem Cell Reservoir with Wide Applications in Periodontics 
The periodontal therapy usually aims at elimination of disease causing bacteria and resolution of inflammation. It involves either resective or regenerative surgery to resolve the inflammation associated defects. Over the years, several methods have been used for achievement of periodontal regeneration. One of the oldest biomaterials used for scaffolds is the fetal membrane. The amniotic membranes of developing embryo, that is, amnion (innermost lining) and chorion (a layer next to it), have the properties with significant potential uses in dentistry. This paper reviews the properties, mechanism of action, and various applications of these placental membranes in general and specifically in Periodontics.
doi:10.1155/2015/274082
PMCID: PMC4684856  PMID: 26770199
22.  Cyanoacrylate for Intraoral Wound Closure: A Possibility? 
Wound closure is a part of any surgical procedure and the objective of laceration repair or incision closure is to approximate the edges of a wound so that natural healing process may occur. Over the years new biomaterials have been discovered as an alternate to conventional suture materials. Cyanoacrylate bioadhesives are one among them. They carry the advantages of rapid application, patient comfort, resistance to infection, hemostatic properties, and no suture removal anxiety. Hence this study was undertaken to study the effect of long chain cyanoacrylate as an adhesive for intraoral wound closure and also to explore its hemostatic and antibacterial effects. Isoamyl-2-cyanoacrylate (AMCRYLATE) was used as the adhesive in the study. In conclusion isoamyl cyanoacrylate can be used for intraoral wound closure, as an alternative to sutures for gluing the mucoperiosteum to bone, for example, after impaction removal, periapical surgeries, and cleft repair. Its hemostatic and antibacterial activity has to be further evaluated.
doi:10.1155/2015/165428
PMCID: PMC4662987  PMID: 26649041
23.  Extraction, Characterization, and Molecular Weight Determination of Senna tora (L.) Seed Polysaccharide 
The objective of the present work was extraction of polysaccharide from Senna tora L. seed and its characterization as a pharmaceutical excipient. Polysaccharide extraction was based on mechanical separation of the endosperm of seeds of Senna tora, water dissolution, centrifugation, and precipitation with acetone. Standard procedures were used to study the viscosity, micromeritic properties, and microbial bioburden. Accelerated stability study was carried out on isolated polysaccharide for six months at 40°C/75 RH as per ICH guidelines. The gum obtained from S. tora seeds was an amorphous free flowing odourless powder with dull brown colour (yield = 35% w/w). The bulk density, tapped density, and angle of repose data reveal that S. tora gum possesses good flow property. The intrinsic viscosity obtained was 1.568 dL/g. The average molecular weight of purified S. tora gum was found to be 198 kDa by intrinsic viscosity method. The results indicated that viscosity of gum solution increases with increase in temperature. FTIR study revealed the absence of degradation or decomposition of polysaccharide at accelerated stability conditions for six months. It has been concluded that extracted polysaccharide can be used as pharmaceutical excipient in terms of flow behavior, microbial properties, and stability.
doi:10.1155/2015/928679
PMCID: PMC4660029  PMID: 26640490
24.  Maxillary Sinus Augmentation Combining Bio-Oss with the Bone Marrow Aspirate Concentrate: A Histomorphometric Study in Humans 
Purpose. To investigate the regenerative results obtained with the association of bone marrow aspirate concentrate using the Bone Marrow Aspirate Concentrate (BMAC) method to a xenogeneic bone graft (Bio-Oss) in sinus floor elevation. Materials and Methods. Using a randomized controlled study design in eight consecutive patients (age of 55.4 ± 9.2 years), 16 sinus floor lift procedures were performed with Bio-Oss alone (control group, CG, n = 8) or combined with bone marrow aspirate concentrate obtained via the BMAC method (test group, TG, n = 8). Six months after the grafting procedures, bone biopsies were harvested during implant placement and were analyzed by histomorphometry. Results. Histomorphometric analysis revealed a significantly higher amount (p < 0.05) of vital mineralized tissue in TG when compared to the CG (55.15 ± 20.91% and 27.30 ± 5.55%, resp.). For nonvital mineralized tissue, TG presented a statistically higher level of Bio-Oss resorption (p < 0.05) when compared with the CG (6.32 ± 12.03% and 22.79 ± 9.60%, resp.). Both groups (TG and CG) showed no significantly different levels (p > 0.05) of nonmineralized tissue (38.53 ± 13.08% and 49.90 ± 7.64%, resp.). Conclusion. The use of bone marrow concentrate obtained by BMAC method increased bone formation in sinus lift procedures.
doi:10.1155/2015/121286
PMCID: PMC4620258  PMID: 26543482
25.  Cellular Nutrition in Complex Three-Dimensional Scaffolds: A Comparison between Experiments and Computer Simulations 
Studies on bone cell ingrowth into synthetic, porous three-dimensional (3D) implants showed difficulties arising from impaired cellular proliferation and differentiation in the core region of these scaffolds with increasing scaffold volume in vitro. Therefore, we developed an in vitro perfusion cell culture module, which allows the analysis of cells in the interior of scaffolds under different medium flow rates. For each flow rate the cell viability was measured and compared with results from computer simulations that predict the local oxygen supply and shear stress inside the scaffold based on the finite element method. We found that the local cell viability correlates with the local oxygen concentration and the local shear stress. On the one hand the oxygen supply of the cells in the core becomes optimal with a higher perfusion flow. On the other hand shear stress caused by high flow rates impedes cell vitality, especially at the surface of the scaffold. Our results demonstrate that both parameters must be considered to derive an optimal nutrient flow rate.
doi:10.1155/2015/584362
PMCID: PMC4619933  PMID: 26539216

Results 1-25 (154)