Search tips
Search criteria

Results 1-25 (1185)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Marine and Semi-Synthetic Hydroxysteroids as New Scaffolds for Pregnane X Receptor Modulation 
Marine Drugs  2014;12(6):3091-3115.
In recent years many sterols with unusual structures and promising biological profiles have been identified from marine sources. Here we report the isolation of a series of 24-alkylated-hydroxysteroids from the soft coral Sinularia kavarattiensis, acting as pregnane X receptor (PXR) modulators. Starting from this scaffold a number of derivatives were prepared and evaluated for their ability to activate the PXR by assessing transactivation and quantifying gene expression. Our study reveals that ergost-5-en-3β-ol (4) induces PXR transactivation in HepG2 cells and stimulates the expression of the PXR target gene CYP3A4. To shed light on the molecular basis of the interaction between these ligands and PXR, we investigated, through docking simulations, the binding mechanism of the most potent compound of the series, 4, to the PXR. Our findings provide useful functional and structural information to guide further investigations and drug design.
PMCID: PMC4071567  PMID: 24871460
soft coral; Sinularia kavarattiensis; pregnane X receptor (PXR); hydroxysteroids; docking simulations
2.  Nine New and Five Known Polyketides Derived from a Deep Sea-Sourced Aspergillus sp. 16-02-1 
Marine Drugs  2014;12(6):3116-3137.
Nine new C9 polyketides, named aspiketolactonol (1), aspilactonols A–F (2–7), aspyronol (9) and epiaspinonediol (11), were isolated together with five known polyketides, (S)-2-(2′-hydroxyethyl)-4-methyl-γ-butyrolactone (8), dihydroaspyrone (10), aspinotriol A (12), aspinotriol B (13) and chaetoquadrin F (14), from the secondary metabolites of an Aspergillus sp. 16-02-1 that was isolated from a deep-sea sediment sample. Structures of the new compounds, including their absolute configurations, were determined by spectroscopic methods, especially the 2D NMR, circular dichroism (CD), Mo2-induced CD and Mosher’s 1H NMR analyses. Compound 8 was isolated from natural sources for the first time, and the possible biosynthetic pathways for 1–14 were also proposed and discussed. Compounds 1–14 inhibited human cancer cell lines, K562, HL-60, HeLa and BGC-823, to varying extents.
PMCID: PMC4071568  PMID: 24871461
Aspergillus sp. 16-02-1; fungal strain from deep sea sediment; aspiketolactonol; aspilactonol; aspyronol; lactone; epiaspinonediol; polyketide; structure; cytotoxicity
3.  Investigation of Indolglyoxamide and Indolacetamide Analogues of Polyamines as Antimalarial and Antitrypanosomal Agents 
Marine Drugs  2014;12(6):3138-3160.
Pure compound screening has previously identified the indolglyoxylamidospermidine ascidian metabolites didemnidine A and B (2 and 3) to be weak growth inhibitors of Trypanosoma brucei rhodesiense (IC50 59 and 44 μM, respectively) and Plasmodium falciparum (K1 dual drug resistant strain) (IC50 41 and 15 μM, respectively), but lacking in selectivity (L6 rat myoblast, IC50 24 μM and 25 μM, respectively). To expand the structure–activity relationship of this compound class towards both parasites, we have prepared and biologically tested a library of analogues that includes indoleglyoxyl and indoleacetic “capping acids”, and polyamines including spermine (PA3-4-3) and extended analogues PA3-8-3 and PA3-12-3. 7-Methoxy substituted indoleglyoxylamides were typically found to exhibit the most potent antimalarial activity (IC50 10–92 nM) but with varying degrees of selectivity versus the L6 rat myoblast cell line. A 6-methoxyindolglyoxylamide analogue was the most potent growth inhibitor of T. brucei (IC50 0.18 μM) identified in the study: it, however, also exhibited poor selectivity (L6 IC50 6.0 μM). There was no apparent correlation between antimalarial and anti-T. brucei activity in the series. In vivo evaluation of one analogue against Plasmodium berghei was undertaken, demonstrating a modest 20.9% reduction in parasitaemia.
PMCID: PMC4071569  PMID: 24879541
marine natural products; protozoa; malaria; Plasmodium falciparum; Trypanosoma brucei rhodesiense; polyamine; indolglyoxamide; alkaloid
4.  Marennine, Promising Blue Pigments from a Widespread Haslea Diatom Species Complex 
Marine Drugs  2014;12(6):3161-3189.
In diatoms, the main photosynthetic pigments are chlorophylls a and c, fucoxanthin, diadinoxanthin and diatoxanthin. The marine pennate diatom Haslea ostrearia has long been known for producing, in addition to these generic pigments, a water-soluble blue pigment, marennine. This pigment, responsible for the greening of oysters in western France, presents different biological activities: allelopathic, antioxidant, antibacterial, antiviral, and growth-inhibiting. A method to extract and purify marennine has been developed, but its chemical structure could hitherto not be resolved. For decades, H. ostrearia was the only organism known to produce marennine, and can be found worldwide. Our knowledge about H. ostrearia-like diatom biodiversity has recently been extended with the discovery of several new species of blue diatoms, the recently described H. karadagensis, H. silbo sp. inedit. and H. provincialis sp. inedit. These blue diatoms produce different marennine-like pigments, which belong to the same chemical family and present similar biological activities. Aside from being a potential source of natural blue pigments, H. ostrearia-like diatoms thus present a commercial potential for aquaculture, cosmetics, food and health industries.
PMCID: PMC4071570  PMID: 24879542
aquaculture; biological activities; cosmetics and food industry; Haslea ostrearia-like diatoms; marennine-like blue pigments
5.  New Prenylxanthones from the Deep-Sea Derived Fungus Emericella sp. SCSIO 05240 
Marine Drugs  2014;12(6):3190-3202.
Four new prenylxanthones, emerixanthones A–D (1–4), together with six known analogues (5–10), were isolated from the culture of the deep-sea sediment derived fungus Emericella sp. SCSIO 05240, which was identified on the basis of morphology and ITS sequence analysis. The newstructures were determined by NMR (1H, 13C NMR, HSQC, HMBC, and 1H-1H COSY), MS, CD, and optical rotation analysis. The absolute configuration of prenylxanthone skeleton was also confirmed by the X-ray crystallographic analysis. Compounds 1 and 3 showed weak antibacterial activities, and 4 displayed mild antifungal activities against agricultural pathogens.
PMCID: PMC4071571  PMID: 24879543
prenylxanthone; Emericella; deep-sea; fungus
6.  Zn-Driven Discovery of a Hydrothermal Vent Fungal Metabolite Clavatustide C, and an Experimental Study of the Anti-Cancer Mechanism of Clavatustide B 
Marine Drugs  2014;12(6):3203-3217.
A naturally new cyclopeptide, clavatustide C, was produced as a stress metabolite in response to abiotic stress elicitation by one of the hydrothermal vent fluid components Zn in the cultured mycelia of Aspergillus clavatus C2WU, which were isolated from Xenograpsus testudinatus. X. testudinatus lives at extreme, toxic habitat around the sulphur-rich hydrothermal vents in Taiwan Kueishantao. The known compound clavatustide B was also isolated and purified. This is the first example of a new hydrothermal vent microbial secondary metabolite produced in response to abiotic Zn treatment. The structures were established by spectroscopic means. The regulation of G1-S transition in hepatocellular carcinoma cell lines by clavatustide B was observed in our previous study. The purpose of the present study was to verify these results in other types of cancer cell lines and elucidate the possible molecular mechanism for the anti-cancer activities of clavatustide B. In different human cancer cell lines, including pancreatic cancer (Panc-1), gastric cancer (MGC-803), colorectal cancer (SW-480), retinoblastoma (WERI-Rb-1) and prostate cancer (PC3), clavatustide B efficiently suppressed cell proliferations in a dose-dependent manner. Although different cancer cell lines presented variety in Max effect dose and IC50 dose, all cancer cell lines showed a lower Max effect dose and IC50 dose compared with human fibroblasts (hFB) (p < 0.05). Moreover, significant accumulations in G1 phases and a reduction in S phases (p < 0.05) were observed under clavatustide B treatment. The expression levels of 2622 genes including 39 cell cycle-associated genes in HepG2 cells were significantly altered by the treatment with 15 μg/mL clavatustide B after 48 h. CCNE2 (cyclin E2) was proved to be the key regulator of clavatustide B-induced G1-S transition blocking in several cancer cell lines by using real-time PCR.
PMCID: PMC4071572  PMID: 24879544
clavatustides; stress-driven discovery; hydrothermal vent; anti-cancer
7.  Profiling of Polar Lipids in Marine Oleaginous Diatom Fistulifera solaris JPCC DA0580: Prediction of the Potential Mechanism for Eicosapentaenoic Acid-Incorporation into Triacylglycerol 
Marine Drugs  2014;12(6):3218-3230.
The marine oleaginous diatom Fistulifera solaris JPCC DA0580 is a candidate for biodiesel production because of its high lipid productivity. However, the substantial eicosapentaenoic acid (EPA) content in this strain would affect the biodiesel quality. On the other hand, EPA is also known as the essential health supplement for humans. EPAs are mainly incorporated into glycerolipids in the microalgal cell instead of the presence as free fatty acids. Therefore, the understanding of the EPA biosynthesis including the incorporation of the EPA into glycerolipids especially triacylglycerol (TAG) is fundamental for regulating EPA content for different purposes. In this study, in order to identify the biosynthesis pathway for the EPA-containing TAG species, a lipidomic characterization of the EPA-enriched polar lipids was performed by using direct infusion electrospray ionization (ESI)-Q-TRAP-MS and MS/MS analyses. The determination of the fatty acid positional distribution showed that the sn-2 position of all the chloroplast lipids and part of phosphatidylcholine (PC) species was occupied by C16 fatty acids. This result suggested the critical role of the chloroplast on the lipid synthesis in F. solaris. Furthermore, the exclusive presence of C18 fatty acids in PC highly indicated the biosynthesis of EPA on PC. Finally, the PC-based acyl-editing and head group exchange processes were proposed to be essential for the incorporation of EPA into TAG and chloroplast lipids.
PMCID: PMC4071573  PMID: 24879545
marine oleaginous diatom; Fistuliferasolaris; lipid synthesis; eicosapentaenoic acid (EPA); PC-based acyl-editing
8.  Ilimaquinone and Ethylsmenoquinone, Marine Sponge Metabolites, Suppress the Proliferation of Multiple Myeloma Cells by Down-Regulating the Level of β-Catenin 
Marine Drugs  2014;12(6):3231-3244.
Deregulation of Wnt/β-catenin signaling promotes the development of a broad range of human cancers, including multiple myeloma, and is thus a potential target for the development of therapeutics for this disease. Here, we used a cell-based reporter system to demonstrate that ilimaquinone and ethylsmenoquinone (formerly smenorthoquinone), sesquiterpene-quinones from a marine sponge, inhibited β-catenin response transcription induced with Wnt3a-conditioned medium, by down-regulating the level of intracellular β-catenin. Pharmacological inhibition of glycogen synthase kinase-3β did not abolish the ilimaquinone and ethylsmenoquinone-mediated β-catenin down-regulation. Degradation of β-catenin was consistently found in RPMI-8226 multiple myeloma cells after ilimaquinone and ethylsmenoquinone treatment. Ilimaquinone and ethylsmenoquinone repressed the expression of cyclin D1, c-myc, and axin-2, which are β-catenin/T-cell factor-dependent genes, and inhibited the proliferation of multiple myeloma cells. In addition, ilimaquinone and ethylsmenoquinone significantly induced G0/G1 cell cycle arrest and apoptosis in RPMI-8266 cells. These findings suggest that ilimaquinone and ethylsmenoquinone exert their anti-cancer activity by blocking the Wnt/β-catenin pathway and have significant potential as therapies for multiple myeloma.
PMCID: PMC4071574  PMID: 24879546
ilimaquinone; ethylsmenoquinone; Wnt/β-catenin signaling; multiple myeloma
9.  Quorum Quenching Agents: Resources for Antivirulence Therapy 
Marine Drugs  2014;12(6):3245-3282.
The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy.
PMCID: PMC4071575  PMID: 24886865
quorum sensing; quorum quenching; marine; AHL-degrading activity; antivirulence therapy; antibiotic resistance
10.  Violapyrones H and I, New Cytotoxic Compounds Isolated from Streptomyces sp. Associated with the Marine Starfish Acanthaster planci 
Marine Drugs  2014;12(6):3283-3291.
Two new α-pyrone derivatives, violapyrones H (1) and I (2), along with known violapyrones B (3) and C (4) were isolated from the fermentation broth of a marine actinomycete Streptomyces sp. The strain was derived from a crown-of-thorns starfish, Acanthaster planci, collected from Chuuk, Federated States of Micronesia. The structures of violapyrones were elucidated by the analysis of 1D and 2D NMR and HR-ESIMS data. Violapyrones (1–4) exhibited cytotoxicity against 10 human cancer cell lines with GI50 values of 1.10–26.12 μg/mL when tested using sulforhodamine B (SRB) assay. This is the first report on the cytotoxicity of violapyrones against cancer cell lines and the absolute configuration of violapyrone C.
PMCID: PMC4071576  PMID: 24886866
Streptomyces sp.; violapyrones; anti-cancer activity; α-pyrones; starfish
11.  The Protective Effect of Fucoidan in Rats with Streptozotocin-Induced Diabetic Nephropathy 
Marine Drugs  2014;12(6):3292-3306.
Diabetic nephropathy (DN) has long been recognized as the leading cause of end-stage renal disease, but the efficacy of available strategies for the prevention of DN remains poor. The aim of this study was to investigate the possible beneficial effects of fucoidan (FPS) in streptozotocin (STZ)-induced diabetes in rats. Wistar rats were made diabetic by injection of STZ after removal of the right kidney. FPS was administered to these diabetic rats for 10 weeks. Body weight, physical activity, renal function, and renal morphometry were measured after 10 weeks of treatment. In the FPS-treated group, the levels of blood glucose, BUN, Ccr and Ucr decreased significantly, and microalbumin, serum insulin and the β2-MG content increased significantly. Moreover, the FPS-treated group showed improvements in renal morphometry. In summary, FPS can ameliorate the metabolic abnormalities of diabetic rats and delay the progression of diabetic renal complications.
PMCID: PMC4071577  PMID: 24886867
sulfated polysaccharide; fucoidan; diabetic nephropathy
12.  Identification of Marine Neuroactive Molecules in Behaviour-Based Screens in the Larval Zebrafish 
Marine Drugs  2014;12(6):3307-3322.
High-throughput behavior-based screen in zebrafish is a powerful approach for the discovery of novel neuroactive small molecules for treatment of nervous system diseases such as epilepsy. To identify neuroactive small molecules, we first screened 36 compounds (1–36) derived from marine natural products xyloketals and marine isoprenyl phenyl ether obtained from the mangrove fungus. Compound 1 demonstrated the most potent inhibition on the locomotor activity in larval zebrafish. Compounds 37–42 were further synthesized and their potential anti-epilepsy action was then examined in a PTZ-induced epilepsy model in zebrafish. Compound 1 and compounds 39, 40 and 41 could significantly attenuate PTZ-induced locomotor hyperactivity and elevation of c-fos mRNA in larval zebrafish. Compound 40 showed the most potent inhibitory action against PTZ-induced hyperactivity. The structure-activity analysis showed that the OH group at 12-position played a critical role and the substituents at the 13-position were well tolerated in the inhibitory activity of xyloketal derivatives. Thus, these derivatives may provide some novel drug candidates for the treatment of epilepsy.
PMCID: PMC4071578  PMID: 24886868
behavior-based screen; zebrafish; PTZ; c-fos
13.  Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp 
Marine Drugs  2014;12(6):3323-3351.
Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8) isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1), 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2), and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3) that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont.
PMCID: PMC4071579  PMID: 24893324
Streptomyces; Haliclona simulans; metabolomics; antimycin; antifungal; butenolide
14.  First Total Syntheses and Antimicrobial Evaluation of Penicimonoterpene, a Marine-Derived Monoterpenoid, and Its Various Derivatives 
Marine Drugs  2014;12(6):3352-3370.
The first total synthesis of marine-derived penicimonoterpene (±)-1 has been achieved in four steps from 6-methylhept-5-en-2-one using a Reformatsky reaction as the key step to construct the basic carbon skeleton. A total of 24 new derivatives of 1 have also been designed and synthesized. Their structures were characterized by analysis of their 1H NMR, 13C NMR and HRESIMS data. Some of them showed significant antibacterial activity against Aeromonas hydrophila, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Vibrio anguillarum, V. harveyi and/or V. parahaemolyticus, and some showed activity against plant-pathogenic fungi (Alternaria brassicae, Colletotrichum gloeosporioides and/or Fusarium graminearum). Some of the derivatives exhibited antimicrobial MIC values ranging from 0.25 to 4 μg/mL, which were stronger than those of the positive control. Notably, Compounds 3b and 10 showed extremely high selectively against plant-pathogenic fungus F. graminearum (MIC 0.25 μg/mL) and pathogenic bacteria E. coli (MIC 1 μg/mL), implying their potential as antimicrobial agents. SAR analysis of 1 and its derivatives indicated that modification of the carbon-carbon double bond at C-6/7, of groups on the allylic methylene unit and of the carbonyl group at C-1, effectively enhanced the antimicrobial activity.
PMCID: PMC4071580  PMID: 24897384
(±)-penicimonoterpene; total synthesis; antimicrobial activity; structure-activity relationship
15.  Numerosol A–D, New Cembranoid Diterpenes from the Soft Coral Sinularia numerosa 
Marine Drugs  2014;12(6):3371-3380.
Four new cembrane-type diterpenes; numerosol A–D (1–4); along with a known steroid; gibberoketosterol (5); were isolated from the Taiwanese soft coral Sinularia numerosa. The structures of these metabolites were determined by extensive analysis of spectroscopic data. Gibberoketosterol (5) exhibited cytotoxicity against P-388 (mouse lymphocytic leukemia) cell line with an ED50 of 6.9 μM.
PMCID: PMC4071581  PMID: 24897385
soft coral; Sinularia numerosa; numerosol A–D; gibberoketosterol; cytotoxicity
16.  Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp 
Marine Drugs  2014;12(6):3381-3398.
With the depletion of global fish stocks, caused by high demand and effective fishing techniques, alternative sources for long chain omega-3 fatty acids are required for human nutrition and aquaculture feeds. Recent research has focused on land-based cultivation of microalgae, the primary producers of omega-3 fatty acids in the marine food web. The effect of salinity on fatty acids and related gene expression was studied in the model marine microalga, Tetraselmis sp. M8. Correlations were found for specific fatty acid biosynthesis and gene expression according to salinity and the growth phase. Low salinity was found to increase the conversion of C18:4 stearidonic acid (SDA) to C20:4 eicosatetraenoic acid (ETA), correlating with increased transcript abundance of the Δ-6-elongase-encoding gene in salinities of 5 and 10 ppt compared to higher salinity levels. The expression of the gene encoding β-ketoacyl-coenzyme was also found to increase at lower salinities during the nutrient deprivation phase (Day 4), but decreased with further nutrient stress. Nutrient deprivation also triggered fatty acids synthesis at all salinities, and C20:5 eicosapentaenoic acid (EPA) increased relative to total fatty acids, with nutrient starvation achieving a maximum of 7% EPA at Day 6 at a salinity of 40 ppt.
PMCID: PMC4071582  PMID: 24901700
nutrients; EPA; fatty acids; omega-3; gene expression
17.  Potent Cytotoxic Peptides from the Australian Marine Sponge Pipestela candelabra 
Marine Drugs  2014;12(6):3399-3415.
Two consecutive prefractionated fractions of the Australian marine sponge extract, Pipestela candelabra, were identified to be selectively active on the human prostate cancer cells (PC3) compared to the human neonatal foreskin fibroblast non-cancer cells (NFF). Twelve secondary metabolites were isolated in which four compounds are new small peptides. Their structures were characterized by spectroscopic and chemical analysis. These compounds inhibited selectively the growth of prostate cancer cells with IC50 values in the picomolar to sub-micromolar range. Structure-activity relationship of these compounds is discussed.
PMCID: PMC4071583  PMID: 24901701
Pipestela candelabra; cytotoxicity; peptide; milnamide; hemiasterlin; geodiamolide; prostate cancer
18.  Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts 
Marine Drugs  2014;12(6):3416-3448.
Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.
PMCID: PMC4071584  PMID: 24905482
metabolomics; dereplication; symbiotic bacteria; mass spectrometry; NMR; multivariate analysis; metabolic profiling
19.  Characterization of a Novel Conus bandanus Conopeptide Belonging to the M-Superfamily Containing Bromotryptophan 
Marine Drugs  2014;12(6):3449-3465.
A novel conotoxin (conopeptide) was biochemically characterized from the crude venom of the molluscivorous marine snail, Conus bandanus (Hwass in Bruguière, 1792), collected in the south-central coast of Vietnam. The peptide was identified by screening bromotryptophan from chromatographic fractions of the crude venom. Tandem mass spectrometry techniques were used to detect and localize different post-translational modifications (PTMs) present in the BnIIID conopeptide. The sequence was confirmed by Edman’s degradation and mass spectrometry revealing that the purified BnIIID conopeptide had 15 amino acid residues, with six cysteines at positions 1, 2, 7, 11, 13, and 14, and three PTMs: bromotryptophan, γ-carboxy glutamate, and amidated aspartic acid, at positions “4”, “5”, and “15”, respectively. The BnIIID peptide was synthesized for comparison with the native peptide. Homology comparison with conopeptides having the III-cysteine framework (–CCx1x2x3x4Cx1x2x3Cx1CC–) revealed that BnIIID belongs to the M-1 family of conotoxins. This is the first report of a member of the M-superfamily containing bromotryptophan as PTM.
PMCID: PMC4071585  PMID: 24905483
Conus bandanus; cone snail venom; mass spectrometry; BnIIID; bromotryptophan; γ-carboxy glutamate; post-translational modifications
20.  Chromomycins A2 and A3 from Marine Actinomycetes with TRAIL Resistance-Overcoming and Wnt Signal Inhibitory Activities 
Marine Drugs  2014;12(6):3466-3476.
A biological screening study of an actinomycetes strain assembly was conducted using a cell-based cytotoxicity assay. The CKK1019 strain was isolated from a sea sand sample. Cytotoxicity-guided fractionation of the CKK1019 strain culture broth, which exhibited cytotoxicity, led to the isolation of chromomycins A2 (1) and A3 (2). 1 and 2 showed potent cytotoxicity against the human gastric adenocarcinoma (AGS) cell line (IC50 1; 1.7 and 2; 22.1 nM), as well as strong inhibitory effects against TCF/β-catenin transcription (IC50 1; 1.8 and 2; 15.9 nM). 2 showed the ability to overcome tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance. To the best of our knowledge, the effects of chromomycins A2 (1) and A3 (2) on TRAIL resistance-overcoming activity, and on the Wnt signaling pathway, have not been reported previously. Thus, 1 and 2 warrant potential drug lead studies in relation to TRAIL-resistant and Wnt signal-related diseases and offer potentially useful chemical probes for investigating TRAIL resistance and the Wnt signaling pathway.
PMCID: PMC4071586  PMID: 24905484
chromomycin A2; chromomycin A3; actinomycetes; TRAIL; Wnt
21.  Cespitulones A and B, Cytotoxic Diterpenoids of a New Structure Class from the Soft Coral Cespitularia taeniata 
Marine Drugs  2014;12(6):3477-3486.
Two novel diterpenoids, cespitulones A (1) and B (2), were isolated from extracts of the soft coral Cespitularia taeniata. Both compounds possess an unprecedented bicyclo [10.3.1] ring system with C-C bond connections between C-10 and C-20, and between C-20 and C-11. Their structures were elucidated on the basis of extensive spectroscopic analyses. Compound 1 exhibited significant cytotoxicity against human medulloblastoma and colon adenocarcinoma cancer cells.
PMCID: PMC4071587  PMID: 24905485
Cespitularia taeniata; diterpenoid; cespitulone; cytotoxicity
22.  Chlorella zofingiensis as an Alternative Microalgal Producer of Astaxanthin: Biology and Industrial Potential 
Marine Drugs  2014;12(6):3487-3515.
Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed.
PMCID: PMC4071588  PMID: 24918452
astaxanthin; Chlorella zofingiensis; fed-batch; genetic engineering; mass cultivation; microalgae; stress
23.  Emerging Strategies and Integrated Systems Microbiology Technologies for Biodiscovery of Marine Bioactive Compounds 
Marine Drugs  2014;12(6):3516-3559.
Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
PMCID: PMC4071589  PMID: 24918453
marine bioactive compounds; metagenomics; synthetic biology; biocatalyst discovery; metaproteomic; dereplication; omic approaches
24.  Acetylcholinesterase Inhibitory Activity of Pigment Echinochrome A from Sea Urchin Scaphechinus mirabilis 
Marine Drugs  2014;12(6):3560-3573.
Echinochrome A (EchA) is a dark-red pigment of the polyhydroxynaphthoquinone class isolated from sea urchin Scaphechinus mirabilis. Acetylcholinesterase (AChE) inhibitors are used in the treatment of various neuromuscular disorders, and are considered as strong therapeutic agents for the treatment of Alzheimer’s disease (AD). Although EchA is clinically used to treat ophthalmic diseases and limit infarct formation during ischemia/reperfusion injury, anti-AChE effect of EchA is still unknown. In this study, we investigated the anti-AChE effect of EchA in vitro. EchA and its exhausted form which lost anti-oxidant capacity did not show any significant cytotoxicy on the H9c2 and A7r5 cells. EchA inhibited AChE with an irreversible and uncompetitive mode. In addition, EchA showed reactive oxygen species scavenging activity, particularly with nitric oxide. These findings indicate new therapeutic potential for EchA in treating reduced acetylcholine-related diseases including AD and provide an insight into developing new AChE inhibitors.
PMCID: PMC4071590  PMID: 24918454
acetylcholinesterase; echinochrome A; nitric oxide; sea urchin; uncompetitive
25.  Diazaquinomycins E–G, Novel Diaza-Anthracene Analogs from a Marine-Derived Streptomyces sp. 
Marine Drugs  2014;12(6):3574-3586.
As part of our program to identify novel secondary metabolites that target drug-resistant ovarian cancers, a screening of our aquatic-derived actinomycete fraction library against a cisplatin-resistant ovarian cancer cell line (OVCAR5) led to the isolation of novel diaza-anthracene antibiotic diazaquinomycin E (DAQE; 1), the isomeric mixture of diazaquinomycin F (DAQF; 2) and diazaquinomycin G (DAQG; 3), and known analog diazaquinomycin A (DAQA; 4). The structures of DAQF and DAQG were solved through deconvolution of X-Ray diffraction data of their corresponding co-crystal. DAQE and DAQA exhibited moderate LC50 values against OVCAR5 of 9.0 and 8.8 μM, respectively. At lethal concentrations of DAQA, evidence of DNA damage was observed via induction of apoptosis through cleaved-PARP. Herein, we will discuss the isolation, structure elucidation, and biological activity of these secondary metabolites.
PMCID: PMC4071591  PMID: 24921978
actinomycete; marine; Streptomyces; ovarian cancer; OVCAR5; diazaquinomycin

Results 1-25 (1185)