Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("rajata, tina")
1.  Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood 
Hundreds of wood-inhabiting fungal species are now threatened, principally due to a lack of dead wood in intensively managed forests, but the consequences of reduced fungal diversity on ecosystem functioning are not known. Several experiments have shown that primary productivity is negatively affected by a loss of species, but the effects of microbial diversity on decomposition are less studied. We studied the relationship between fungal diversity and the in vitro decomposition rate of slightly, moderately and heavily decayed Picea abies wood with indigenous fungal communities that were diluted to examine the influence of diversity. Respiration rate, wood-degrading hydrolytic enzymes and fungal community structure were assessed during a 16-week incubation. The number of observed OTUs in DGGE was used as a measure of fungal diversity. Respiration rate increased between early- and late-decay stages. Reduced fungal diversity was associated with lower respiration rates during intermediate stages of decay, but no effects were detected at later stages. The activity of hydrolytic enzymes varied among decay stages and fungal dilutions. Our results suggest that functioning of highly diverse communities of the late-decay stage were more resistant to the loss of diversity than less diverse communities of early decomposers. This indicates the accumulation of functional redundancy during the succession of the fungal community in decomposing substrates.
PMCID: PMC4032996  PMID: 24904544
biodiversity; woody debris; respiration activity; functional redundancy; enzymes
2.  Development of a Research Dedicated Archival System (TARAS) in a University Hospital 
Journal of Digital Imaging  2010;24(5):864-873.
Recent healthcare policies have influenced the manner in which patient data is handled in research projects, and the regulations concerning protected health information have become significantly tighter. Thus, new procedures are needed to facilitate research while protecting the confidentiality of patient data and ensuring the integrity of clinical work in the expanding environment of electronic files and databases. We have addressed this problem in a university hospital setting by developing the Tampere Research Archival System (TARAS), an extensive data warehouse for research purposes. This dynamic system includes numerous integrated and pseudonymized imaging studies and clinical data. In a pilot study on asthma patients, we tested and improved the functionality of the data archival system. TARAS is feasible to use in retrieving, analyzing, and processing both image and non-image data. In this paper, we present a detailed workflow of the implementation process of the data warehouse, paying special attention to administrative, ethical, practical, and data security concerns. The establishment of TARAS will enhance and accelerate research practice at Tampere University Hospital, while also improving the safety of patient information as well as the prospects for national and international research collaboration. We hope that much can be learned from our experience of planning, designing, and implementing a research data warehouse combining imaging studies and medical records in a university hospital.
PMCID: PMC3180537  PMID: 21042830
PACS; Research PACS; Hospital information systems; Research Archival System; TARAS; Medical research; Large scale; Pseudonymization
3.  Effects of Transcriptional Pausing on Gene Expression Dynamics 
PLoS Computational Biology  2010;6(3):e1000704.
Stochasticity in gene expression affects many cellular processes and is a source of phenotypic diversity between genetically identical individuals. Events in elongation, particularly RNA polymerase pausing, are a source of this noise. Since the rate and duration of pausing are sequence-dependent, this regulatory mechanism of transcriptional dynamics is evolvable. The dependency of pause propensity on regulatory molecules makes pausing a response mechanism to external stress. Using a delayed stochastic model of bacterial transcription at the single nucleotide level that includes the promoter open complex formation, pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination, we investigate how RNA polymerase pausing affects a gene's transcriptional dynamics and gene networks. We show that pauses' duration and rate of occurrence affect the bursting in RNA production, transcriptional and translational noise, and the transient to reach mean RNA and protein levels. In a genetic repressilator, increasing the pausing rate and the duration of pausing events increases the period length but does not affect the robustness of the periodicity. We conclude that RNA polymerase pausing might be an important evolvable feature of genetic networks.
Author Summary
Investigation on how phenotypic diversity of genetically identical organisms is generated and regulated has focused on noise in gene expression. It is unknown to what extent noise in gene expression and genetic networks is evolvable, and by which mechanisms it evolves. The noise has several sources, e.g., noise in transcription initiation and during elongation. We focus on RNA polymerase (RNAP) pausing and show that it can regulate, to some extent, noise in gene expression. RNAP frequently pauses during elongation. The pausing frequency and average duration are sequence-specific, thus evolvable. The dependency of pause propensity on regulatory molecules makes pausing a mechanism adaptable to rapidly changing environments. We study, in a stochastic model of bacterial transcription at the single nucleotide level that includes the promoter open complex formation, pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination, how pausing affects the dynamics of gene expression and gene networks. In a model of a genetic clock, with periodic dynamics, pauses affect the period length but do not disrupt the periodicity. We conclude that RNAP pausing is an important evolvable feature of gene regulatory networks, that can be used by organisms to adapt to changing environments and regulate phenotypic diversity.
PMCID: PMC2837387  PMID: 20300642

Results 1-3 (3)