PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Association of genome variations in the renin-angiotensin system with physical performance 
Human Genomics  2012;6(1):24.
Background
The aim of this study was to determine the genotype distribution and allelic frequencies of ACE (I/D), AGTR1 (A +1166 C), BDKRB2 (+9/−9) and LEP (G–2548A) genomic variations in 175 Greek athletes who excelled at a national and/or international level and 169 healthy Greek adults to identify whether some particular combinations of these loci might serve as predictive markers for superior physical condition.
Results
The D/D genotype of the ACE gene (p = 0.034) combined with the simultaneous existence of BDKRB2 (+9/−9) (p = 0.001) or LEP (G/A) (p = 0.021) genotypes was the most prevalent among female athletes compared to female controls. A statistical trend was also observed in BDKRB2 (+9/−9) and LEP (G–2548A) heterozygous genotypes among male and female Greek athletes, and in ACE (I/D) only in male athletes. Finally, both male and female athletes showed the highest rates in the AGTR1 (A/A) genotype.
Conclusions
Our results suggest that the co-existence of ACE (D/D), BDKRB2 (+9/−9) or LEP (G/A) genotypes in female athletes might be correlated with a superior level of physical performance.
doi:10.1186/1479-7364-6-24
PMCID: PMC3543191  PMID: 23176367
Genetic variations; Renin-angiotensin system; Physical performance
2.  Authentication and Self-Correction in Sequential MRI Slices 
Journal of Digital Imaging  2010;24(5):943-949.
One of the new challenges of Information Technology in the medical world is the protection and authentication of a variety of digital medical files, datasets, and images. In this work, the ability of magnetic resonance imaging (MRI) slice sequences to hide digital data is investigated and more specifically the case that the hidden data are the regions of interest (ROI) of the MRI slices. The regions of non-interest (RONI) are used as cover. The hiding capacity of the whole sequence is taken into account. Any ROI-targeted tampering attempt can be detected, and the original image can be self-restored (under certain conditions) by extracting the ROI from the RONI.
doi:10.1007/s10278-010-9340-3
PMCID: PMC3180543  PMID: 20945077
Medical imaging; MRI; ROI; Authentication; Self-correction; Integrity; JPEG2000

Results 1-2 (2)