PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (47)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  OSBPL2 encodes a protein of inner and outer hair cell stereocilia and is mutated in autosomal dominant hearing loss (DFNA67) 
Background
Early-onset hearing loss is mostly of genetic origin. The complexity of the hearing process is reflected by its extensive genetic heterogeneity, with probably many causative genes remaining to be identified. Here, we aimed at identifying the genetic basis for autosomal dominant non-syndromic hearing loss (ADNSHL) in a large German family.
Methods
A panel of 66 known deafness genes was analyzed for mutations by next-generation sequencing (NGS) in the index patient. We then conducted genome-wide linkage analysis, and whole-exome sequencing was carried out with samples of two patients. Expression of Osbpl2 in the mouse cochlea was determined by immunohistochemistry. Because Osbpl2 has been proposed as a target of miR-96, we investigated homozygous Mir96 mutant mice for its upregulation.
Results
Onset of hearing loss in the investigated ADNSHL family is in childhood, initially affecting the high frequencies and progressing to profound deafness in adulthood. However, there is considerable intrafamilial variability. We mapped a novel ADNSHL locus, DFNA67, to chromosome 20q13.2-q13.33, and subsequently identified a co-segregating heterozygous frameshift mutation, c.141_142delTG (p.Arg50Alafs*103), in OSBPL2, encoding a protein known to interact with the DFNA1 protein, DIAPH1. In mice, Osbpl2 was prominently expressed in stereocilia of cochlear outer and inner hair cells. We found no significant Osbpl2 upregulation at the mRNA level in homozygous Mir96 mutant mice.
Conclusion
The function of OSBPL2 in the hearing process remains to be determined. Our study and the recent description of another frameshift mutation in a Chinese ADNSHL family identify OSBPL2 as a novel gene for progressive deafness.
Electronic supplementary material
The online version of this article (doi:10.1186/s13023-015-0238-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s13023-015-0238-5
PMCID: PMC4334766
OSBPL2; DFNA67; Autosomal dominant hearing loss
2.  Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss 
PLoS Genetics  2014;10(10):e1004688.
Spinster homolog 2 (Spns2) acts as a Sphingosine-1-phosphate (S1P) transporter in zebrafish and mice, regulating heart development and lymphocyte trafficking respectively. S1P is a biologically active lysophospholipid with multiple roles in signalling. The mechanism of action of Spns2 is still elusive in mammals. Here, we report that Spns2-deficient mice rapidly lost auditory sensitivity and endocochlear potential (EP) from 2 to 3 weeks old. We found progressive degeneration of sensory hair cells in the organ of Corti, but the earliest defect was a decline in the EP, suggesting that dysfunction of the lateral wall was the primary lesion. In the lateral wall of adult mutants, we observed structural changes of marginal cell boundaries and of strial capillaries, and reduced expression of several key proteins involved in the generation of the EP (Kcnj10, Kcnq1, Gjb2 and Gjb6), but these changes were likely to be secondary. Permeability of the boundaries of the stria vascularis and of the strial capillaries appeared normal. We also found focal retinal degeneration and anomalies of retinal capillaries together with anterior eye defects in Spns2 mutant mice. Targeted inactivation of Spns2 in red blood cells, platelets, or lymphatic or vascular endothelial cells did not affect hearing, but targeted ablation of Spns2 in the cochlea using a Sox10-Cre allele produced a similar auditory phenotype to the original mutation, suggesting that local Spns2 expression is critical for hearing in mammals. These findings indicate that Spns2 is required for normal maintenance of the EP and hence for normal auditory function, and support a role for S1P signalling in hearing.
Author Summary
Progressive hearing loss is common in the human population but we know very little about the molecular mechanisms involved. Mutant mice are useful for investigating these mechanisms and have revealed a wide range of different abnormalities that can all lead to the same outcome: deafness. We report here our findings of a new mouse line with a mutation in the Spns2 gene, affecting the release of a lipid called sphingosine-1-phosphate, which has an important role in several processes in the body. For the first time, we report that this molecular pathway is required for normal hearing through a role in generating a voltage difference that acts like a battery, allowing the sensory hair cells of the cochlea to detect sounds at extremely low levels. Without the normal function of the Spns2 gene and release of sphingosine-1-phosphate locally in the inner ear, the voltage in the cochlea declines, leading to rapid loss of sensitivity to sound and ultimately to complete deafness. The human version of this gene, SPNS2, may be involved in human deafness, and understanding the underlying mechanism presents an opportunity to develop potential treatments for this form of hearing loss.
doi:10.1371/journal.pgen.1004688
PMCID: PMC4214598  PMID: 25356849
3.  Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse 
PLoS Genetics  2014;10(10):e1004705.
The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP). A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1), while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1). The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation.
Author Summary
Recent developments in high throughput applications to manipulate and inactivate specific genes in mouse embryonic stem cells (ES cells) have allowed for the initiation of large scale reverse genetic screens in the mouse. The immediate connection of a phenotype to a mutated (null) gene represents a paradigm shift in our ability to explore gene function. This study utilized such a screening approach to investigate the genetic contribution to skin development and homeostasis. Not only does this approach provide insight into the genetics of skin biology, it is also instrumental in generating novel models with which to study the genetic underpinnings of skin disease. Initial screening of 562 mutated genes in mice uncovered previously unrecognized genes involved in the biology of this organ and identified novel functions for previously studied genes associated with epidermal phenotypes. Taken together, these results highlight high throughput screening approaches that are valuable in reverse genetic screening and provide a pool of mouse mutants, available to the scientific community, that will serve as the basis for further detailed investigations into skin function and skin disease.
doi:10.1371/journal.pgen.1004705
PMCID: PMC4207618  PMID: 25340873
4.  Salt-inducible kinase 3, SIK3, is a new gene associated with hearing 
Human Molecular Genetics  2014;23(23):6407-6418.
Hearing function is known to be heritable, but few significant and reproducible associations of genetic variants have been identified to date in the adult population. In this study, genome-wide association results of hearing function from the G-EAR consortium and TwinsUK were used for meta-analysis. Hearing ability in eight population samples of Northern and Southern European ancestry (n = 4591) and the Silk Road (n = 348) was measured using pure-tone audiometry and summarized using principal component (PC) analysis. Genome-wide association analyses for PC1–3 were conducted separately in each sample assuming an additive model adjusted for age, sex and relatedness of subjects. Meta-analysis was performed using 2.3 million single-nucleotide polymorphisms (SNPs) tested against each of the three PCs of hearing ability in 4939 individuals. A single SNP lying in intron 6 of the salt-inducible kinase 3 (SIK3) gene was found to be associated with hearing PC2 (P = 3.7×10−8) and further supported by whole-genome sequence in a subset. To determine the relevance of this gene in the ear, expression of the Sik3 protein was studied in mouse cochlea of different ages. Sik3 was expressed in murine hair cells during early development and in cells of the spiral ganglion during early development and adulthood. Our results suggest a developmental role of Sik3 in hearing and may be required for the maintenance of adult auditory function.
doi:10.1093/hmg/ddu346
PMCID: PMC4222365  PMID: 25060954
5.  Ectopic Expression of Activated Notch or SOX2 Reveals Similar and Unique Roles in the Development of the Sensory Cell Progenitors in the Mammalian Inner Ear 
The Journal of Neuroscience  2013;33(41):16146-16157.
Hearing impairment or vestibular dysfunction in humans often results from a permanent loss of critical cell types in the sensory regions of the inner ear, including hair cells, supporting cells, or cochleovestibular neurons. These important cell types arise from a common sensory or neurosensory progenitor, although little is known about how these progenitors are specified. Studies have shown that Notch signaling and the transcription factor Sox2 are required for the development of these lineages. Previously we and others demonstrated that ectopic activation of Notch can direct nonsensory cells to adopt a sensory fate, indicating a role for Notch in early specification events. Here, we explore the relationship between Notch and SOX2 by ectopically activating these factors in nonsensory regions of the mouse cochlea, and demonstrate that, similar to Notch, SOX2 can specify sensory progenitors, consistent with a role downstream of Notch signaling. However, we also show that Notch has a unique role in promoting the proliferation of the sensory progenitors. We further demonstrate that Notch can only induce ectopic sensory regions within a certain time window of development, and that the ectopic hair cells display specialized stereocilia bundles similar to endogenous hair cells. These results demonstrate that Notch and SOX2 can both drive the sensory program in nonsensory cells, indicating these factors may be useful in cell replacement strategies in the inner ear.
doi:10.1523/JNEUROSCI.3150-12.2013
PMCID: PMC3792456  PMID: 24107947
6.  Targeting of Slc25a21 Is Associated with Orofacial Defects and Otitis Media Due to Disrupted Expression of a Neighbouring Gene 
PLoS ONE  2014;9(3):e91807.
Homozygosity for Slc25a21tm1a(KOMP)Wtsi results in mice exhibiting orofacial abnormalities, alterations in carpal and rugae structures, hearing impairment and inflammation in the middle ear. In humans it has been hypothesised that the 2-oxoadipate mitochondrial carrier coded by SLC25A21 may be involved in the disease 2-oxoadipate acidaemia. Unexpectedly, no 2-oxoadipate acidaemia-like symptoms were observed in animals homozygous for Slc25a21tm1a(KOMP)Wtsi despite confirmation that this allele reduces Slc25a21 expression by 71.3%. To study the complete knockout, an allelic series was generated using the loxP and FRT sites typical of a Knockout Mouse Project allele. After removal of the critical exon and neomycin selection cassette, Slc25a21 knockout mice homozygous for the Slc25a21tm1b(KOMP)Wtsi and Slc25a21tm1d(KOMP)Wtsi alleles were phenotypically indistinguishable from wild-type. This led us to explore the genomic environment of Slc25a21 and to discover that expression of Pax9, located 3′ of the target gene, was reduced in homozygous Slc25a21tm1a(KOMP)Wtsi mice. We hypothesize that the presence of the selection cassette is the cause of the down regulation of Pax9 observed. The phenotypes we observed in homozygous Slc25a21tm1a(KOMP)Wtsi mice were broadly consistent with a hypomorphic Pax9 allele with the exception of otitis media and hearing impairment which may be a novel consequence of Pax9 down regulation. We explore the ramifications associated with this particular targeted mutation and emphasise the need to interpret phenotypes taking into consideration all potential underlying genetic mechanisms.
doi:10.1371/journal.pone.0091807
PMCID: PMC3958370  PMID: 24642684
7.  Expression and Replication Studies to Identify New Candidate Genes Involved in Normal Hearing Function 
PLoS ONE  2014;9(1):e85352.
Considerable progress has been made in identifying deafness genes, but still little is known about the genetic basis of normal variation in hearing function. We recently carried out a Genome Wide Association Study (GWAS) of quantitative hearing traits in southern European populations and found several SNPs with suggestive but none with significant association. In the current study, we followed up these SNPs to investigate which of them might show a genuine association with auditory function using alternative approaches. Firstly, we generated a shortlist of 19 genes from the published GWAS results. Secondly, we carried out immunocytochemistry to examine expression of these 19 genes in the mouse inner ear. Twelve of them showed distinctive cochlear expression patterns. Four showed expression restricted to sensory hair cells (Csmd1, Arsg, Slc16a6 and Gabrg3), one only in marginal cells of the stria vascularis (Dclk1) while the others (Ptprd, Grm8, GlyBP, Evi5, Rimbp2, Ank2, Cdh13) in multiple cochlear cell types. In the third step, we tested these 12 genes for replication of association in an independent set of samples from the Caucasus and Central Asia. Nine out of them showed nominally significant association (p<0.05). In particular, 4 were replicated at the same SNP and with the same effect direction while the remaining 5 showed a significant association in a gene-based test. Finally, to look for genotype-phenotype relationship, the audiometric profiles of the three genotypes of the most strongly associated gene variants were analyzed. Seven out of the 9 replicated genes (CDH13, GRM8, ANK2, SLC16A6, ARSG, RIMBP2 and DCLK1) showed an audiometric pattern with differences between different genotypes further supporting their role in hearing function. These data demonstrate the usefulness of this multistep approach in providing new insights into the molecular basis of hearing and may suggest new targets for treatment and prevention of hearing impairment.
doi:10.1371/journal.pone.0085352
PMCID: PMC3891868  PMID: 24454846
8.  Linkage Study and Exome Sequencing Identify a BDP1 Mutation Associated with Hereditary Hearing Loss 
PLoS ONE  2013;8(12):e80323.
Nonsyndromic Hereditary Hearing Loss is a common disorder accounting for at least 60% of prelingual deafness. GJB2 gene mutations, GJB6 deletion, and the A1555G mitochondrial mutation play a major role worldwide in causing deafness, but there is a high degree of genetic heterogeneity and many genes involved in deafness have not yet been identified. Therefore, there remains a need to search for new causative mutations. In this study, a combined strategy using both linkage analysis and sequencing identified a new mutation causing hearing loss. Linkage analysis identified a region of 40 Mb on chromosome 5q13 (LOD score 3.8) for which exome sequencing data revealed a mutation (c.7873 T>G leading to p.*2625Gluext*11) in the BDP1 gene (B double prime 1, subunit of RNA polymerase III transcription initiation factor IIIB) in patients from a consanguineous Qatari family of second degree, showing bilateral, post-lingual, sensorineural moderate to severe hearing impairment. The mutation disrupts the termination codon of the transcript resulting in an elongation of 11 residues of the BDP1 protein. This elongation does not contain any known motif and is not conserved across species. Immunohistochemistry studies carried out in the mouse inner ear showed Bdp1 expression within the endothelial cells in the stria vascularis, as well as in mesenchyme-derived cells surrounding the cochlear duct. The identification of the BDP1 mutation increases our knowledge of the molecular bases of Nonsyndromic Hereditary Hearing Loss and provides new opportunities for the diagnosis and treatment of this disease in the Qatari population.
doi:10.1371/journal.pone.0080323
PMCID: PMC3846559  PMID: 24312468
9.  A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains 
Genome Biology  2013;14(7):R82.
Background
The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms.
Results
We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems.
Conclusions
Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.
doi:10.1186/gb-2013-14-7-r82
PMCID: PMC4053787  PMID: 23902802
Mouse inbred lines; sequence variation; mouse phenotyping; gene knockout; C57BL/6
10.  Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes 
Cell  2013;154(2):452-464.
Summary
Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis.
PaperClip
Graphical Abstract
Highlights
•Large openly available resource of targeted mouse mutants and phenotypic data•Screen for broad range of disease features and traits•Many novel phenotypes suggest functions for both studied and unstudied genes•Haploinsufficiency and pleiotropy are common
More than 900 new mutant mice lines and a multifaceted phenotypic screening platform reveal unanticipated pleiotropies, widespread effects of haploinsufficiency, potential disease models, and functions for unstudied genes.
doi:10.1016/j.cell.2013.06.022
PMCID: PMC3717207  PMID: 23870131
11.  Correction: Mcph1-Deficient Mice Reveal a Role for MCPH1 in Otitis Media 
PLoS ONE  2013;8(6):10.1371/annotation/fadb7426-df05-4ec5-a0ba-21981295b0eb.
doi:10.1371/annotation/fadb7426-df05-4ec5-a0ba-21981295b0eb
PMCID: PMC3692952
12.  Mcph1-Deficient Mice Reveal a Role for MCPH1 in Otitis Media 
PLoS ONE  2013;8(3):e58156.
Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1tm1a/tm1a) mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute's Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1tm1a/tm1a mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1tm1a/tm1a mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1tm1a/tm1a mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.
doi:10.1371/journal.pone.0058156
PMCID: PMC3596415  PMID: 23516444
13.  Mice deficient in H+-ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear 
Disease Models & Mechanisms  2012;6(2):434-442.
SUMMARY
Mutations in the ATP6V0A4 gene lead to autosomal recessive distal renal tubular acidosis in patients, who often show sensorineural hearing impairment. A first Atp6v0a4 knockout mouse model that recapitulates the loss of H+-ATPase function seen in humans has been generated and recently reported (Norgett et al., 2012). Here, we present the first detailed analysis of the structure and function of the auditory system in Atp6v0a4−/− knockout mice. Measurements of the auditory brainstem response (ABR) showed significantly elevated thresholds in homozygous mutant mice, which indicate severe hearing impairment. Heterozygote thresholds were normal. Analysis of paint-filled inner ears and sections from E16.5 embryos revealed a marked expansion of cochlear and endolymphatic ducts in Atp6v0a4−/− mice. A regulatory link between Atp6v0a4, Foxi1 and Pds has been reported and we found that the endolymphatic sac of Atp6v0a4−/− mice expresses both Foxi1 and Pds, which suggests a downstream position of Atp6v0a4. These mutants also showed a lack of endocochlear potential, suggesting a functional defect of the stria vascularis on the lateral wall of the cochlear duct. However, the main K+ channels involved in the generation of endocochlear potential, Kcnj10 and Kcnq1, are strongly expressed in Atp6v0a4−/− mice. Our results lead to a better understanding of the role of this proton pump in hearing function.
doi:10.1242/dmm.010645
PMCID: PMC3597025  PMID: 23065636
14.  Headbobber: A Combined Morphogenetic and Cochleosaccular Mouse Model to Study 10qter Deletions in Human Deafness 
PLoS ONE  2013;8(2):e56274.
The recessive mouse mutant headbobber (hb) displays the characteristic behavioural traits associated with vestibular defects including headbobbing, circling and deafness. This mutation was caused by the insertion of a transgene into distal chromosome 7 affecting expression of native genes. We show that the inner ear of hb/hb mutants lacks semicircular canals and cristae, and the saccule and utricle are fused together in a single utriculosaccular sac. Moreover, we detect severe abnormalities of the cochlear sensory hair cells, the stria vascularis looks severely disorganised, Reissner's membrane is collapsed and no endocochlear potential is detected. Myo7a and Kcnj10 expression analysis show a lack of the melanocyte-like intermediate cells in hb/hb stria vascularis, which can explain the absence of endocochlear potential. We use Trp2 as a marker of melanoblasts migrating from the neural crest at E12.5 and show that they do not interdigitate into the developing strial epithelium, associated with abnormal persistence of the basal lamina in the hb/hb cochlea. We perform array CGH, deep sequencing as well as an extensive expression analysis of candidate genes in the headbobber region of hb/hb and littermate controls, and conclude that the headbobber phenotype is caused by: 1) effect of a 648 kb deletion on distal Chr7, resulting in the loss of three protein coding genes (Gpr26, Cpmx2 and Chst15) with expression in the inner ear but unknown function; and 2) indirect, long range effect of the deletion on the expression of neighboring genes on Chr7, associated with downregulation of Hmx3, Hmx2 and Nkx1.2 homeobox transcription factors. Interestingly, deletions of the orthologous region in humans, affecting the same genes, have been reported in nineteen patients with common features including sensorineural hearing loss and vestibular problems. Therefore, we propose that headbobber is a useful model to gain insight into the mechanisms underlying deafness in human 10qter deletion syndrome.
doi:10.1371/journal.pone.0056274
PMCID: PMC3572983  PMID: 23457544
15.  The Role of Sphingosine-1-phosphate Transporter Spns2 in Immune System Function 
Sphingosine-1-phosphate (S1P) is lipid messenger involved in the regulation of embryonic development, immune system functions, and many other physiological processes. However the mechanisms of S1P transport across cellular membranes remain poorly understood with several ATP-binding cassette family members and the spinster 2 (Spns2) member of the major facilitator superfamily known to mediate S1P transport in cell culture. Spns2 was also shown to control S1P activities in zebrafish in vivo and to play a critical role in zebrafish cardiovascular development. However the in vivo roles of Spns2 in mammals and its involvement in the different S1P-dependent physiological processes have not been investigated. Here we characterized Spns2-null mouse line carrying the Spns2tm1a(KOMP)Wtsi allele (Spns2tm1a). The Spns2tm1a/tm1a animals were viable, indicating a divergence in Spns2 function from its zebrafish orthologue. However the immunological phenotype of the Spns2tm1a/tm1a mice closely mimicked the phenotypes of partial S1P deficiency and impaired S1P-dependent lymphocyte trafficking, with a depletion of lymphocytes in circulation, an increase in mature single-positive T cells in the thymus, and a selective reduction in mature B cells in the spleen and bone marrow. Spns2 activity in the non-hematopoietic cells was critical for normal lymphocyte development and localization. Overall Spns2tm1a/tm1a resulted in impaired humoral immune responses to immunization. This work thus demonstrated a physiological role for Spns2 in mammalian immune system functions but not in cardiovascular development. Other components of the S1P signaling network are investigated as drug targets for immunosuppressive therapy, but the selective action of Spns2 may present an advantage in this regard.
doi:10.4049/jimmunol.1200282
PMCID: PMC3381845  PMID: 22664872
Spns2 (spinster 2); sphingosine-1-phosphate (S1P); lymphocyte egress
16.  Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) Are Two New Mutations of Lmx1a Causing Severe Cochlear and Vestibular Defects 
PLoS ONE  2012;7(11):e51065.
Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new spontaneous alleles of the Lmx1a gene in mice. Homozygous mutants show head tossing and circling behaviour, indicative of vestibular defects, and they have short tails and white belly patches of variable size. The analysis of auditory brainstem responses (ABR) showed that mtl and bsd homozygotes are deaf, whereas heterozygous and wildtype littermates have normal hearing. Paint-filled inner ears at E16.5 revealed that mtl and bsd homozygotes lack endolymphatic ducts and semicircular canals and have short cochlear ducts. These new alleles show similarities with dreher (Lmx1a) mutants. Complementation tests between mtl and dreher and between mtl and bsd suggest that mtl and bsd are new mutant alleles of the Lmx1a gene. To determine the Lmx1a mutation in mtl and bsd mutant mice we performed PCR followed by sequencing of genomic DNA and cDNA. The mtl mutation is a single point mutation in the 3′ splice site of exon 4 leading to an exon extension and the activation of a cryptic splice site 44 base pairs downstream, whereas the bsd mutation is a genomic deletion that includes exon 3. Both mutations lead to a truncated LMX1A protein affecting the homeodomain (mtl) or LIM2-domain (bsd), which is critical for LMX1A protein function. Moreover, the levels of Lmx1a transcript in mtl and bsd mutants are significantly down-regulated. Hmx2/3 and Pax2 expression are also down-regulated in mtl and bsd mutants, suggesting a role of Lmx1a upstream of these transcription factors in early inner ear morphogenesis. We have found that these mutants develop sensory patches although they are misshapen. The characterization of these two new Lmx1a alleles highlights the critical role of this gene in the development of the cochlea and vestibular system.
doi:10.1371/journal.pone.0051065
PMCID: PMC3511360  PMID: 23226461
17.  Omi, a recessive mutation on chromosome 10, is a novel allele of Ostm1 
Mammalian Genome  2012;24(1-2):44-53.
Large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis has provided many rodent models for human disease. Here we describe the initial characterization and mapping of a recessive mutation that leads to degeneration of the incisors, failure of molars to erupt, a grey coat colour, and mild osteopetrosis. We mapped the omi mutation to chromosome 10 between D10Mit214 and D10Mit194. The Ostm1 gene is a likely candidate gene in this region and the grey-lethal allele, Ostm1gl, and omi mutations fail to complement each other. We show that om/om mice have reduced levels of Ostm1 protein. To date we have not been able to identify the causative mutation. We propose that omi is a novel hypomorphic mutation affecting Ostm1 expression, potentially in a regulatory element.
Electronic supplementary material
The online version of this article (doi:10.1007/s00335-012-9438-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s00335-012-9438-7
PMCID: PMC3560959  PMID: 23160729
18.  Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project 
Mammalian Genome  2012;23(9-10):600-610.
Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80 % of the mutant lines. In addition, 57 % of the lines were viable, 13 % subviable, 30 % embryonic lethal, and 7 % displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model.
doi:10.1007/s00335-012-9418-y
PMCID: PMC3463797  PMID: 22961258
19.  A reduction in Ptprq associated with specific features of the deafness phenotype of the miR-96 mutant mouse diminuendo 
miR-96 is a microRNA, a non-coding RNA gene which regulates a wide array of downstream genes. The miR-96 mouse mutant diminuendo exhibits deafness and arrested hair cell functional and morphological differentiation. We have previously shown that several genes are markedly downregulated in the diminuendo organ of Corti; one of these is Ptprq, a gene known to be important for maturation and maintenance of hair cells. In order to study the contribution that downregulation of Ptprq makes to the diminuendo phenotype, we carried out microarrays, scanning electron microscopy and single hair cell electrophysiology to compare diminuendo mutants (heterozygous and homozygous) with mice homozygous for a functional null allele of Ptprq. In terms of both morphology and electrophysiology, the auditory phenotype of mice lacking Ptprq resembles that of diminuendo heterozygotes, while diminuendo homozygotes are more severely affected. A comparison of transcriptomes indicates there is a broad similarity between diminuendo homozygotes and Ptprq-null mice. The reduction in Ptprq observed in diminuendo mice appears to be a major contributor to the morphological, transcriptional and electrophysiological phenotype, but does not account for the complete diminuendo phenotype.
doi:10.1111/ejn.12484
PMCID: PMC4065360  PMID: 24446963
ear development; hereditary hearing loss; knockout and transgenic m; molecular genetics; sensory hair cells
20.  Specific expression of Kcna10, Pxn and Odf2 in the organ of Corti 
Gene Expression Patterns  2012;12(5-6):172-179.
Highlights
► We studied the expression of Pxn, Kcna10 and Odf2 in the developing mouse inner ear. ► We covered several ages between E14.5 and P5, and also looked at adults. ► Pxn is a focal adhesion protein expressed strongly in pillar cells. ► Kcna10 is a potassium channel expressed in hair cells. ► Odf2 (Cenexin) marks dendrites extending to and contacting hair cells.
The development of the organ of Corti and the highly specialized cells required for hearing involves a multitude of genes, many of which remain unknown. Here we describe the expression pattern of three genes not previously studied in the inner ear in mice at a range of ages both embryonic and early postnatal. Kcna10, a tetrameric Shaker-like potassium channel, is expressed strongly in the hair cells themselves. Odf2, as its centriolar isoform Cenexin, marks the dendrites extending to and contacting hair cells, and Pxn, a focal adhesion scaffold protein, is most strongly expressed in pillar cells during the ages studied. The roles of these genes are yet to be elucidated, but their specific expression patterns imply potential functional significance in the inner ear.
doi:10.1016/j.gep.2012.03.001
PMCID: PMC3368262  PMID: 22446089
Odf2; Cenexin; Pxn; Kcna10; Inner ear
21.  Auditory Function in the Tc1 Mouse Model of Down Syndrome Suggests a Limited Region of Human Chromosome 21 Involved in Otitis Media 
PLoS ONE  2012;7(2):e31433.
Down syndrome is one of the most common congenital disorders leading to a wide range of health problems in humans, including frequent otitis media. The Tc1 mouse carries a significant part of human chromosome 21 (Hsa21) in addition to the full set of mouse chromosomes and shares many phenotypes observed in humans affected by Down syndrome with trisomy of chromosome 21. However, it is unknown whether Tc1 mice exhibit a hearing phenotype and might thus represent a good model for understanding the hearing loss that is common in Down syndrome. In this study we carried out a structural and functional assessment of hearing in Tc1 mice. Auditory brainstem response (ABR) measurements in Tc1 mice showed normal thresholds compared to littermate controls and ABR waveform latencies and amplitudes were equivalent to controls. The gross anatomy of the middle and inner ears was also similar between Tc1 and control mice. The physiological properties of cochlear sensory receptors (inner and outer hair cells: IHCs and OHCs) were investigated using single-cell patch clamp recordings from the acutely dissected cochleae. Adult Tc1 IHCs exhibited normal resting membrane potentials and expressed all K+ currents characteristic of control hair cells. However, the size of the large conductance (BK) Ca2+ activated K+ current (IK,f), which enables rapid voltage responses essential for accurate sound encoding, was increased in Tc1 IHCs. All physiological properties investigated in OHCs were indistinguishable between the two genotypes. The normal functional hearing and the gross structural anatomy of the middle and inner ears in the Tc1 mouse contrast to that observed in the Ts65Dn model of Down syndrome which shows otitis media. Genes that are trisomic in Ts65Dn but disomic in Tc1 may predispose to otitis media when an additional copy is active.
doi:10.1371/journal.pone.0031433
PMCID: PMC3279367  PMID: 22348087
22.  Exome sequencing identifies a missense mutation in Isl1 associated with low penetrance otitis media in dearisch mice 
Genome Biology  2011;12(9):R90.
Background
Inflammation of the middle ear (otitis media) is very common and can lead to serious complications if not resolved. Genetic studies suggest an inherited component, but few of the genes that contribute to this condition are known. Mouse mutants have contributed significantly to the identification of genes predisposing to otitis media
Results
The dearisch mouse mutant is an ENU-induced mutant detected by its impaired Preyer reflex (ear flick in response to sound). Auditory brainstem responses revealed raised thresholds from as early as three weeks old. Pedigree analysis suggested a dominant but partially penetrant mode of inheritance. The middle ear of dearisch mutants shows a thickened mucosa and cellular effusion suggesting chronic otitis media with effusion with superimposed acute infection. The inner ear, including the sensory hair cells, appears normal. Due to the low penetrance of the phenotype, normal backcross mapping of the mutation was not possible. Exome sequencing was therefore employed to identify a non-conservative tyrosine to cysteine (Y71C) missense mutation in the Islet1 gene, Isl1Drsh. Isl1 is expressed in the normal middle ear mucosa. The findings suggest the Isl1Drshmutation is likely to predispose carriers to otitis media.
Conclusions
Dearisch, Isl1Drsh, represents the first point mutation in the mouse Isl1 gene and suggests a previously unrecognized role for this gene. It is also the first recorded exome sequencing of the C3HeB/FeJ background relevant to many ENU-induced mutants. Most importantly, the power of exome resequencing to identify ENU-induced mutations without a mapped gene locus is illustrated.
doi:10.1186/gb-2011-12-9-r90
PMCID: PMC3308053  PMID: 21936904
23.  Genetics, Gene Expression and Bioinformatics of the Pituitary Gland 
Hormone research  2009;71(Suppl 2):101-115.
Genetic cases of congenital pituitary hormone deficiency are common and many are caused by transcription factor defects. Mouse models with orthologous mutations are invaluable for uncovering the molecular mechanisms that lead to problems in organ development and typical patient characteristics. We are using mutant mice defective in the transcription factors PROP1 and POU1F1 for gene expression profiling to identify target genes for these critical transcription factors and candidates for cases of pituitary hormone deficiency of unknown etiology. These studies reveal critical roles for Wnt signalling pathways including the TCF/LEF transcription factors and interacting proteins of the groucho family, bone morphogenetic proteins antagonists, and targets of notch signalling. Current studies are investigating roles of novel homeobox genes and pathways that regulate the transition from proliferation to differentiation, cell adhesion and cell migration.
Pituitary adenomas are a common human health problem, yet most cases are sporadic, necessitating alternative approaches to traditional Mendelian genetic studies. Mouse models of adenoma formation offer the opportunity for gene expression profiling during progressive stages of hyperplasia, adenoma and tumorigenesis. This approach holds promise for identification of relevant pathways and candidate genes as risk factors for adenoma formation, understanding mechanisms of progression, and identifying drug targets and clinically relevant biomarkers.
doi:10.1159/000192447
PMCID: PMC3140954  PMID: 19407506
cell proliferation; apoptosis; transcription factors; Prop1; Emx2
24.  The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65 
Human Molecular Genetics  2011;20(13):2560-2570.
Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B.  In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place.  We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle.  We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells.  This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light.  RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels.  Following a 50–60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity.  Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction.  Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision.
doi:10.1093/hmg/ddr155
PMCID: PMC3110002  PMID: 21493626
25.  A missense mutation in Fgfr1 causes ear and skull defects in hush puppy mice 
Mammalian Genome  2011;22(5-6):290-305.
The hush puppy mouse mutant has been shown previously to have skull and outer, middle, and inner ear defects, and an increase in hearing threshold. The fibroblast growth factor receptor 1 (Fgfr1) gene is located in the region of chromosome 8 containing the mutation. Sequencing of the gene in hush puppy heterozygotes revealed a missense mutation in the kinase domain of the protein (W691R). Homozygotes were found to die during development, at approximately embryonic day 8.5, and displayed a phenotype similar to null mutants. Reverse transcription PCR indicated a decrease in Fgfr1 transcript in heterozygotes and homozygotes. Generation of a construct containing the mutation allowed the function of the mutated receptor to be studied. Immunocytochemistry showed that the mutant receptor protein was present at the cell membrane, suggesting normal expression and trafficking. Measurements of changes in intracellular calcium concentration showed that the mutated receptor could not activate the IP3 pathway, in contrast to the wild-type receptor, nor could it initiate activation of the Ras/MAP kinase pathway. Thus, the hush puppy mutation in fibroblast growth factor receptor 1 appears to cause a loss of receptor function. The mutant protein appears to have a dominant negative effect, which could be due to it dimerising with the wild-type protein and inhibiting its activity, thus further reducing the levels of functional protein. A dominant modifier, Mhspy, which reduces the effect of the hush puppy mutation on pinna and stapes development, has been mapped to the distal end of chromosome 7 and may show imprinting.
Electronic supplementary material
The online version of this article (doi:10.1007/s00335-011-9324-8) contains supplementary material, which is available to authorized users.
doi:10.1007/s00335-011-9324-8
PMCID: PMC3099004  PMID: 21479780

Results 1-25 (47)