Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Structural and Temporal Requirements of Wnt/PCP Protein Vangl2 Function for Convergence and Extension Movements and Facial Branchiomotor Neuron Migration in Zebrafish 
Mechanisms of development  2013;131:1-14.
Van gogh-like 2 (Vangl2), a core component of the Wnt/Planar Cell Polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the N-terminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements.
PMCID: PMC4116749  PMID: 24333599
branchiomotor neuron; neuronal migration; vangl2; hindbrain; zebrafish; Tol2
2.  The PCP Protein Vangl2 Regulates Migration of Hindbrain Motor Neurons by Acting in Floor Plate Cells, and Independently of Cilia Function 
Developmental biology  2013;382(2):10.1016/j.ydbio.2013.08.017.
Vangl2, a core component of the Planar Cell Polarity pathway, is necessary for the caudal migration of Facial Branchiomotor (FBM) neurons in the vertebrate hindbrain. Studies in zebrafish suggest that vangl2 functions largely non-cell autonomously to regulate FBM neuron migration out of rhombomere 4 (r4), but the cell-type within which it acts is not known. Here, we demonstrate that vangl2 functions largely in floor plate cells to regulate caudal neuronal migration. Furthermore, FBM neurons fail to migrate caudally in the mouse Gli2 mutant that lacks the floor plate, suggesting an evolutionarily conserved role for this cell type in neuronal migration. Although hindbrain floor plate cilia are disorganized in vangl2 mutant embryos, cilia appear to be dispensable for neuronal migration. Notably, Vangl2 is enriched in the basolateral, but not apical, membranes of floor plate cells. Taken together, our data suggest strongly that Vangl2 regulates FBM neuron migration by acting in floor plate cells, independently of cilia function.
PMCID: PMC3864009  PMID: 23988578
Hindbrain; Facial Branchiomotor Neuron; Floor plate cells; Van gogh-like 2; Neuronal migration; Cilia
3.  The mouse Wnt/PCP protein Vangl2 is necessary for migration of facial branchiomotor neurons, and functions independently of Dishevelled 
Developmental biology  2012;369(2):211-222.
During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate head, migrate caudally and radially within the brainstem to form a motor nucleus at the pial surface. Several components of the Wnt/planar cell polarity (PCP) pathway, including the transmembrane protein Vangl2, regulate caudal migration of FBM neurons in zebrafish, but their roles in neuronal migration in mouse have not been investigated in detail. Therefore, we analyzed FBM neuron migration in mouse looptail (Lp) mutants, in which Vangl2 is inactivated. In Vangl2 Lp/+ and Vangl2 Lp/Lp embryos, FBM neurons failed to migrate caudally from rhombomere (r) 4 into r6. Although caudal migration was largely blocked, many FBM neurons underwent normal radial migration to the pial surface of the neural tube. In addition, hindbrain patterning and FBM progenitor specification were intact, and FBM neurons did not transfate into other non-migratory neuron types, indicating a specific effect on caudal migration.
Since loss-of-function in some zebrafish Wnt/PCP genes does not affect caudal migration of FBM neurons, we tested whether this was also the case in mouse. Embryos null for Ptk7, a regulator of PCP signaling, had severe defects in caudal migration of FBM neurons. However, FBM neurons migrated normally in Dishevelled (Dvl) 1/2 double mutants, and in zebrafish embryos with disrupted Dvl signaling, suggesting that Dvl function is essentially dispensable for FBM neuron caudal migration. Consistent with this, loss of Dvl2 function in Vangl2 Lp/+ embryos did not exacerbate the Vangl2 Lp/+ neuronal migration phenotype. These data indicate that caudal migration of FBM neurons is regulated by multiple components of the Wnt/PCP pathway, but, importantly, may not require Dishevelled function. Interestingly, genetic-interaction experiments suggest that rostral FBM neuron migration, which is normally suppressed, depends upon Dvl function.
PMCID: PMC3484895  PMID: 22771245
Facial branchiomotor neuron migration; Planar Cell Polarity Signaling; Van gogh-like 2; Disheveled; Protein Tyrosine Kinase 7; Looptail
4.  Expression of Unconventional Myosin Genes During Neuronal Development in Zebrafish 
Gene expression patterns : GEP  2007;8(3):161-170.
Neuronal migration and growth cone motility are essential aspects of the development and maturation of the nervous system. These cellular events result from dynamic changes in the organization and function of the cytoskeleton, in part due to the activity of cytoskeletal motor proteins such as myosins. Although specific myosins such as Myo2 (conventional or muscle myosin), Myo1, and Myo5 have been well characterized for roles in cell motility, the roles of the majority of unconventional (other than Myo2) myosins in cell motility events have not been investigated. To address this issue, we have undertaken an analysis of unconventional myosins in zebrafish, a premier model for studying cellular and growth cone motility in the vertebrate nervous system. We describe the characterization and expression patterns of several members of the unconventional myosin gene family. Based on available genomic sequence data, we identified 18 unconventional myosin- and 4 Myo2-related genes in the zebrafish genome in addition to previously characterized myosin (-1, -2, -3, -5, -6, -7) genes. Phylogenetic analyses indicate that these genes can be grouped into existing classifications for unconventional myosins from mouse and man. In situ hybridization analyses using EST probes for 18 of the 22 identified genes indicate that 11/18 genes are expressed in a restricted fashion in the zebrafish embryo. Specific myosins are expressed in particular neuronal or neuroepithelial cell types in the developing zebrafish nervous system, spanning the periods of neuronal differentiation and migration, and of growth cone guidance and motility.
PMCID: PMC3422748  PMID: 18078791
cytoskeleton; unconventional myosin; neuronal migration; axon guidance; growth cone motility; zebrafish; commissure; spinal cord; motor neuron; neural crest; somite; ear; eye; morphogenesis; in situ hybridization; phylogenetic tree; hindbrain; forebrain; midbrain; cranial muscles
5.  Multiple mechanisms mediate motor neuron migration in the zebrafish hindbrain 
Developmental neurobiology  2010;70(2):87-99.
The transmembrane protein Van gogh-like 2 (Vangl2) is a component of the non-canonical Wnt/Planar Cell Polarity (PCP) signaling pathway, and is required for tangential migration of facial branchiomotor neurons (FBMNs) from rhombomere 4 (r4) to r5–r7 in the vertebrate hindbrain. Since vangl2 is expressed throughout the zebrafish hindbrain, it might also regulate motor neuron migration in other rhombomeres. We tested this hypothesis by examining whether migration of motor neurons out of r2 following ectopic hoxb1b expression was affected in vangl2− (trilobite) mutants. Hoxb1b specifies r4 identity, and when ectopically expressed transforms r2 to an "r4-like" compartment. Using time-lapse imaging, we show that GFP-expressing motor neurons in the r2/r3 region of a hoxb1b-overexpressing wild-type embryo migrate along the anterior-posterior (AP) axis. Furthermore, these cells express prickle1b (pk1b), a Wnt/PCP gene that is specifically expressed in FBMNs and is essential for their migration. Importantly, GFP-expressing motor neurons in the r2/r3 region of hoxb1b-overexpressing trilobite mutants and pk1b morphants often migrate, even though FBMNs in r4 of the same embryos fail to migrate longitudinally (tangentially) into r6 and r7. These observations suggest that tangentially migrating motor neurons in the anterior hindbrain (r1–r3) can use mechanisms that are independent of vangl2 and pk1b functions. Interestingly, analysis of tri; val double mutants also suggests a role for vangl2-independent factors in neuronal migration, since the valentino mutation partially suppresses the trilobite mutant migration defect. Together, the hoxb1b and val experiments suggest that multiple mechanisms regulate motor neuron migration along the AP axis of the zebrafish hindbrain.
PMCID: PMC2976605  PMID: 19937772
motor neuron; neuronal migration; hoxb1; van gogh-like 2; prickle1
6.  The cell adhesion molecule Tag1, transmembrane protein Stbm/Vangl2, and Lamininα1 exhibit genetic interactions during migration of facial branchiomotor neurons in zebrafish 
Developmental biology  2009;325(2):363-373.
Interactions between a neuron and its environment play a major role in neuronal migration. We show here that the cell adhesion molecule Transient Axonal Glycoprotein (Tag1) is necessary for the migration of the facial branchiomotor neurons (FBMNs) in the zebrafish hindbrain. In tag1 morphant embryos, FBMN migration is specifically blocked, with no effect on organization or patterning of other hindbrain neurons. Furthermore, using suboptimal morpholino doses and genetic mutants, we found that tag1, lamininα1 (lama1) and stbm, which encodes a transmembrane protein Vangl2, exhibit pairwise genetic interactions for FBMN migration. Using time-lapse analyses, we found that FBMNs are affected similarly in all three single morphant embryos, with an inability to extend protrusions in a specific direction, and resulting in the failure of caudal migration. These data suggest that tag1, lama1 and vangl2 participate in a common mechanism that integrates signaling between the FBMN and its environment to regulate migration.
PMCID: PMC2991145  PMID: 19013446
Hindbrain; Motor neuron; Branchiomotor; Neuronal migration; Time-lapse imaging; Cell adhesion molecule; Tag1; Van gogh-like; Laminin; Genetic interaction
7.  Transient axonal glycoprotein-1 (TAG-1) and laminin-α1 regulate dynamic growth cone behaviors and initial axon direction in vivo 
Neural Development  2008;3:6.
How axon guidance signals regulate growth cone behavior and guidance decisions in the complex in vivo environment of the central nervous system is not well understood. We have taken advantage of the unique features of the zebrafish embryo to visualize dynamic growth cone behaviors and analyze guidance mechanisms of axons emerging from a central brain nucleus in vivo.
We investigated axons of the nucleus of the medial longitudinal fascicle (nucMLF), which are the first axons to extend in the zebrafish midbrain. Using in vivo time-lapse imaging, we show that both positive axon-axon interactions and guidance by surrounding tissue control initial nucMLF axon guidance. We further show that two guidance molecules, transient axonal glycoprotein-1 (TAG-1) and laminin-α1, are essential for the initial directional extension of nucMLF axons and their subsequent convergence into a tight fascicle. Fixed tissue analysis shows that TAG-1 knockdown causes errors in nucMLF axon pathfinding similar to those seen in a laminin-α1 mutant. However, in vivo time-lapse imaging reveals that while some defects in dynamic growth cone behavior are similar, there are also defects unique to the loss of each gene. Loss of either TAG-1 or laminin-α1 causes nucMLF axons to extend into surrounding tissue in incorrect directions and reduces axonal growth rate, resulting in stunted nucMLF axons that fail to extend beyond the hindbrain. However, defects in axon-axon interactions were found only after TAG-1 knockdown, while defects in initial nucMLF axon polarity and excessive branching of nucMLF axons occurred only in laminin-α1 mutants.
These results demonstrate how two guidance cues, TAG-1 and laminin-α1, influence the behavior of growth cones during axon pathfinding in vivo. Our data suggest that TAG-1 functions to allow growth cones to sense environmental cues and mediates positive axon-axon interactions. Laminin-α1 does not regulate axon-axon interactions, but does influence neuronal polarity and directional guidance.
PMCID: PMC2278142  PMID: 18289389

Results 1-7 (7)