Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  A zebrafish SKIV2L2-enhancer trap line provides a useful tool for the study of peripheral sensory circuit development 
Gene expression patterns : GEP  2011;11(7):409-414.
The zebrafish is an ideal model for elucidating the cellular and molecular mechanisms that underlie development of the peripheral nervous system. A transgenic line that selectively labels all the sensory circuits would be a valuable tool for such investigations. In this study, we describe such a line: the enhancer trap zebrafish line Tg(SKIV2L2:gfp)j1775 which expresses green fluorescent protein (gfp) in the peripheral sensory ganglia. We show that this transgene marks all peripheral ganglia and sensory nerves, beginning at the time when the neurons are first extending their processes, but does not label the efferent nerves. The trapped reporter is inserted just upstream of a previously poorly described gene: lhfpl4 on LG6. The expression pattern of this gene by in situ hybridization reveals a different, but overlapping, pattern of expression compared to that of the transgene. This pattern also does not mimic that of the gene (skiv2l2), which provided the promoter element in the construct. These findings indicate that reporter expression is not dictated by an endogenous enhancer element, but instead arises through an unknown mechanism. Regardless, this reporter line should prove to be a valuable tool in the investigation of peripheral nervous system formation in the zebrafish.
PMCID: PMC3163734  PMID: 21742057
2.  SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer 
The ERBB3 gene is essential for the proper development of the neural crest (NC) and its derivative populations such as Schwann cells. As with all cell fate decisions, transcriptional regulatory control plays a significant role in the progressive restriction and specification of NC derived lineages during development. However, little is known about the sequences mediating transcriptional regulation of ERBB3 or the factors that bind them.
In this study we identified three transcriptional enhancers at the ERBB3 locus and evaluated their regulatory potential in vitro in NC-derived cell types and in vivo in transgenic zebrafish. One enhancer, termed ERBB3_MCS6, which lies within the first intron of ERBB3, directs the highest reporter expression in vitro and also demonstrates epigenetic marks consistent with enhancer activity. We identify a consensus SOX10 binding site within ERBB3_MCS6 and demonstrate, in vitro, its necessity and sufficiency for the activity of this enhancer. Additionally, we demonstrate that transcription from the endogenous Erbb3 locus is dependent on Sox10. Further we demonstrate in vitro that Sox10 physically interacts with that ERBB3_MCS6. Consistent with its in vitro activity, we also show that ERBB3_MCS6 drives reporter expression in NC cells and a subset of its derivative lineages in vivo in zebrafish in a manner consistent with erbb3b expression. We also demonstrate, using morpholino analysis, that Sox10 is necessary for ERBB3_MCS6 expression in vivo in zebrafish.
Taken collectively, our data suggest that ERBB3 may be directly regulated by SOX10, and that this control may in part be facilitated by ERBB3_MCS6.
PMCID: PMC3124416  PMID: 21672228
3.  Leukocyte Tyrosine Kinase Functions in Pigment Cell Development 
PLoS Genetics  2008;4(3):e1000026.
A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk). Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk.
Author Summary
Stem and other multipotent cells generate diverse cell-types, but our understanding of how they make these decisions, which is important for their therapeutic use, is incomplete. Neural crest cells are an important class of multipotent cells and generate multiple stem cell types. We have looked at how pigment cells are made from the neural crest in the zebrafish. The silver shine familiar in so many fish is due to specialised mirror-like pigment cells, called iridophores. We show that these cells are missing in zebrafish shady mutants. We identify the shady gene as encoding a cell signalling receptor, leukocyte tyrosine kinase (Ltk), that has recently been associated with human auto-immune disease. We show that in zebrafish this gene is most likely required to make iridophores from neural crest cells. Thus, we identify a novel pathway required for diversification of these multipotent cells. Our work defines the first role for Ltk in a vertebrate. It provides a mutant resource that will allow us to discover the full breadth of roles for this important gene. Furthermore, the loss of iridophores forms a simple visual screen for inhibition of LTK function and might well have implications in drug discovery.
PMCID: PMC2265441  PMID: 18369445

Results 1-3 (3)