Search tips
Search criteria

Results 1-25 (27)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Craniofacial morphometric analysis of individuals with X-linked hypohidrotic ectodermal dysplasia 
Hypohidrotic ectodermal dysplasia (HED) is the most prevalent type of ectodermal dysplasia (ED). ED is an umbrella term for a group of syndromes characterized by missing or malformed ectodermal structures, including skin, hair, sweat glands, and teeth. The X-linked recessive (XL), autosomal recessive (AR), and autosomal dominant (AD) types of HED are caused by mutations in the genes encoding ectodysplasin (EDA1), EDA receptor (EDAR), or EDAR-associated death domain (EDARADD). Patients with HED have a distinctive facial appearance, yet a quantitative analysis of the HED craniofacial phenotype using advanced three-dimensional (3D) technologies has not been reported. In this study, we characterized craniofacial morphology in subjects with X-linked hypohidrotic ectodermal dysplasia (XLHED) by use of 3D imaging and geometric morphometrics (GM), a technique that uses defined landmarks to quantify size and shape in complex craniofacial morphologies. We found that the XLHED craniofacial phenotype differed significantly from controls. Patients had a smaller and shorter face with a proportionally longer chin and midface, prominent midfacial hypoplasia, a more protrusive chin and mandible, a narrower and more pointed nose, shorter philtrum, a narrower mouth, and a fuller and more rounded lower lip. Our findings refine the phenotype of XLHED and may be useful both for clinical diagnosis of XLHED and to extend understanding of the role of EDA in craniofacial development.
PMCID: PMC4190877  PMID: 25333067
3D imaging; craniofacial development; ectodysplasin; geometric morphometrics; X-linked hypohidrotic ectodermal dysplasia
2.  Isolation and Culture of Dental Epithelial Stem Cells from the Adult Mouse Incisor 
Understanding the cellular and molecular mechanisms that underlie tooth regeneration and renewal has become a topic of great interest1-4, and the mouse incisor provides a model for these processes. This remarkable organ grows continuously throughout the animal's life and generates all the necessary cell types from active pools of adult stem cells housed in the labial (toward the lip) and lingual (toward the tongue) cervical loop (CL) regions. Only the dental stem cells from the labial CL give rise to ameloblasts that generate enamel, the outer covering of teeth, on the labial surface. This asymmetric enamel formation allows abrasion at the incisor tip, and progenitors and stem cells in the proximal incisor ensure that the dental tissues are constantly replenished. The ability to isolate and grow these progenitor or stem cells in vitro allows their expansion and opens doors to numerous experiments not achievable in vivo, such as high throughput testing of potential stem cell regulatory factors. Here, we describe and demonstrate a reliable and consistent method to culture cells from the labial CL of the mouse incisor.
PMCID: PMC4141628  PMID: 24834972
Stem Cell Biology; Issue 87; Epithelial Stem Cells; Adult Stem Cells; Incisor; Cervical Loop; Cell Culture
3.  Characterization of Dental Epithelial Stem Cells from the Mouse Incisor with Two-Dimensional and Three-Dimensional Platforms 
Dental epithelial stem cells (DESCs) drive continuous growth in the adult mouse incisors. To date, a robust system for the primary culture of these cells has not been reported, and little is known about the basic molecular architecture of these cells or the minimal extracellular scaffolding that is necessary to maintain the epithelial stem cell population in an undifferentiated state. We report a method of isolating DESCs from the cervical loop of the mouse mandibular incisor. Cells were viable in a two-dimensional culture system and did not demonstrate preferential proliferation when grown on top of various substrates. Characterization of these cells indicated that E-cadherin, integrin alpha-6, and integrin beta-4 mark the DESCs both in vivo and in vitro. We also grew these cells in a three-dimensional microenvironment and obtained spheres with an epithelial morphology and expression patterns. Insights into the mechanisms of stem cell maintenance in vitro will help lay the groundwork for the successful generation of bioengineered teeth from adult DESCs.
PMCID: PMC3522131  PMID: 22742471
4.  Revitalization of a Diastemal Tooth Primordium in Spry2 Null Mice Results From Increased Proliferation and Decreased Apoptosis 
An understanding of the factors that promote or inhibit tooth development is essential for designing biological tooth replacements. The embryonic mouse dentition provides an ideal system for studying such factors because it consists of two types of tooth primordia. One type of primordium will go on to form a functional tooth, whereas the other initiates development but arrests at or before the bud stage. This developmental arrest contributes to the formation of the toothless mouse diastema. It is accompanied by the apoptosis of the rudimentary diastemal buds, which presumably results from the insufficient activity of anti-apoptotic signals such as fibroblast growth factors (FGFs). We have previously shown that the arrest of a rudimentary tooth bud can be rescued by inactivating Spry2, an antagonist of FGF signaling. Here, we studied the role of the epithelial cell death and proliferation in this process by comparing the development of a rudimentary diastemal tooth bud (R2) and the first molar in the mandibles of Spry2−/− and wild-type (WT) embryos using histological sections, image analysis and 3D reconstructions. In the WT R2 at embryonic day 13.5, significantly increased apoptosis and decreased proliferation were found compared with the first molar. In contrast, increased levels of FGF signaling in Spry2−/− embryos led to significantly decreased apoptosis and increased proliferation in the R2 bud. Consequently, the R2 was involved in the formation of a supernumerary tooth primordium. Studies of the revitalization of rudimentary tooth primordia in mutant mice can help to lay the foundation for tooth regeneration by enhancing our knowledge of mechanisms that regulate tooth formation.
PMCID: PMC2880865  PMID: 19127536
5.  Temporal Analysis of Ectopic Enamel Production in Incisors From Sprouty Mutant Mice 
The mouse incisor has two unusual features: it grows continuously and it is covered by enamel exclusively on the labial side. The continuous growth is driven in part by epithelial stem cells in the cervical loop region that can both self-renew and give rise to ameloblasts. We have previously reported that ectopic enamel is found on the lingual side of the incisor in mice with loss-of-function of sprouty (spry) genes. Spry2+/−; Spry4−/− mice, in which three sprouty alleles have been inactivated, have ectopic enamel as a result of upregulation of epithelial-mesenchymal FGF signaling in the lingual part of the cervical loop. Interestingly, lingual enamel is also present in the early postnatal period in Spry4−/− mice, in which only two sprouty alleles have been inactivated, but ectopic enamel is not found in adults of this genotype. To explore the mechanisms underlying the disappearance of lingual enamel in Spry4−/− adults, we studied the fate of the lingual enamel in Spry4−/− mice by comparing the morphology and growth of their lower incisors with wild type and Spry2+/−; Spry4−/− mice at several timepoints between the perinatal period and adulthood. Ameloblasts and enamel were detected on the lingual side in postnatal Spry2+/−; Spry4−/+ incisors. By contrast, new ectopic ameloblasts ceased to differentiate after postnatal day 3 in Spry4−/− incisors, which was followed by a progressive loss of lingual enamel. Both the posterior extent of lingual enamel and the time of its last deposition were variable early postnatally in Spry4−/− incisors, but in all Spry4−/− adult incisors the lingual enamel was ultimately lost through continuous growth and abrasion of the incisor.
PMCID: PMC2837846  PMID: 19101957
6.  On the cutting edge of organ renewal: identification, regulation and evolution of incisor stem cells 
The rodent incisor is one of a number of organs that grow continuously throughout the life of an animal. Continuous growth of the incisor arose as an evolutionary adaptation to compensate for abrasion at the distal end of the tooth. The sustained turnover of cells that deposit the mineralized dental tissues is made possible by epithelial and mesenchymal stem cells residing at the proximal end of the incisor. A complex network of signaling pathways and transcription factors regulates the formation, maintenance, and differentiation of these stem cells during development and throughout adulthood. Research over the past 15 years has led to significant progress in our understanding of this network, which includes FGF, BMP, Notch, and Hh signaling, as well as cell adhesion molecules and microRNAs. This review surveys key historical experiments that laid the foundation of the field and discusses more recent findings that definitively identified the stem cell population, elucidated the regulatory network, and demonstrated possible genetic mechanisms for the evolution of continuously growing teeth.
PMCID: PMC4252016  PMID: 24307456
hypselodont; tissue regeneration; tooth; dental; renewal
7.  A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable 
Nature  2011;478(7368):255-259.
The small intestine epithelium renews every 2 to 5 days, making it one of the most regenerative mammalian tissues. Genetic inducible fate mapping studies have identified two principal epithelial stem cell pools in this tissue. One pool consists of columnar Lgr5-expressing cells that cycle rapidly and are present predominantly at the crypt base1. The other pool consists of Bmi1-expressing cells that largely reside above the crypt base2. However, the relative functions of these two pools and their interrelationship are not understood. Here, we specifically ablated Lgr5-expressing cells using a diphtheria toxin receptor (DTR) gene knocked into the Lgr5 locus. We found that complete loss of the Lgr5-expressing cells did not perturb homeostasis of the epithelium, indicating that other cell types can compensate for elimination of this population. After ablation of Lgr5-expressing cells, progeny production by Bmi1-expressing cells increased, suggesting that Bmi1-expressing stem cells compensate for the loss of Lgr5-expressing cells. Indeed, lineage tracing showed that Bmi1-expressing cells gave rise to Lgr5-expressing cells, pointing to a hierarchy of stem cells in the intestinal epithelium. Our results demonstrate that Lgr5-expressing cells are dispensable for normal intestinal homeostasis. In the absence of these cells, the Bmi1-expressing cells can serve as an alternative stem cell pool, providing the first experimental evidence for the interrelationship between these populations. The Bmi1-expressing stem cells may represent both a reserve stem cell pool in case of injury to the small intestine epithelium and a source for replenishment of the Lgr5-expressing cells under non-pathological conditions.
PMCID: PMC4251967  PMID: 21927002
8.  Developmental disorders of the dentition: an update 
Dental anomalies are common congenital malformations that can occur either as isolated findings or as part of a syndrome. This review focuses on genetic causes of abnormal tooth development and the implications of these abnormalities for clinical care. As an introduction, we describe general insights into the genetics of tooth development obtained from mouse and zebrafish models. This is followed by a discussion of isolated as well as syndromic tooth agenesis, including Van der Woude syndrome, ectodermal dysplasias, oral-facial-digital syndrome type I, Rieger syndrome, holoprosencephaly, and tooth anomalies associated with cleft lip and palate. Next, we review delayed formation and eruption of teeth, as well as abnormalities in tooth size, shape and form. Finally, isolated and syndromic causes of supernumerary teeth are considered, including cleidocranial dysplasia and Gardner syndrome.
PMCID: PMC3844689  PMID: 24124058
mouse; zebrafish; teeth; hypodontia; supernumerary teeth; craniofacial; syndrome; tooth
9.  Craniofacial and Dental Development in Cardio-facio-cutaneous Syndrome: The Importance of Ras Signaling Homeostasis 
Clinical genetics  2012;83(6):539-544.
Cardio-facio-cutaneous syndrome (CFC) is a RASopathy that is characterized by craniofacial, dermatologic, gastrointestinal, ocular, cardiac, and neurologic anomalies. CFC is caused by activating mutations in the Ras/mitogen-activated protein kinase (MAPK) signaling pathway that lies downstream of receptor tyrosine kinase (RTK) signaling. RTK signaling is known to play a central role in craniofacial and dental development, but to date, no studies have systematically examined individuals with CFC to define key craniofacial and dental features. To fill this critical gap in our knowledge, we evaluated the craniofacial and dental phenotype of a large cohort (n=32) of CFC individuals who attended the 2009 and 2011 CFC International Family Conferences. We determined that the craniofacial features common in CFC include macrocephaly, bitemporal narrowing, convex facial profile, and hypoplastic supraorbital ridges. In addition, there is a characteristic dental phenotype in CFC syndrome that includes malocclusion with open bite, posterior crossbite, dental crowding, and a high-arched palate. This thorough evaluation of the craniofacial and dental phenotype in CFC individuals provides a step forward in our understanding of the role of RTK/MAPK signaling in human craniofacial development and will aid clinicians who treat patients with CFC.
PMCID: PMC4115672  PMID: 22946697
Cardio-facio-cutaneous syndrome; CFC; craniofacial development; malocclusion; MAPK pathway; occlusion; Ras; RASopathy; receptor tyrosine kinase; signal transduction; tooth development
10.  Injectable Bone Tissue Engineering Using Expanded Mesenchymal Stem Cells 
Stem cells (Dayton, Ohio)  2013;31(3):572-580.
Patients suffering from bone defects are often treated with autologous bone transplants, but this therapy can cause many complications. New approaches are therefore needed to improve treatment for bone defects, and stem cell therapy presents an exciting alternative approach. Although extensive evidence from basic studies using stem cells has been reported, very few clinical applications using stem cells for bone tissue engineering have been developed. We investigated whether injectable tissue-engineered bone composed of mesenchymal stem cells (MSCs) and platelet rich plasma was able to regenerate functional bone in alveolar deficiencies. We performed these studies in animals and subsequently carried out pilot trial cases in patients with long-term follow up; these showed good bone formation using minimally invasive MSC transplantation. All patients exhibited significantly improved bone volume with no side effects. Newly formed bone areas at 3 months was significantly higher than the pre-operation baseline (P <0.001) and reached levels equivalent to that of native bone. No significant bone resorption occurred during long term follow-up. Injectable tissue-engineered bone restored masticatory function in patients. This novel clinical approach represents an effective therapeutic utilization of bone tissue engineering.
PMCID: PMC4043220  PMID: 23225744
tissue engineering; regenerative medicine; bone; cell transplantation; clinical application
11.  From molecules to mastication: the development and evolution of teeth 
Teeth are unique to vertebrates and have played a central role in their evolution. The molecular pathways and morphogenetic processes involved in tooth development have been the focus of intense investigation over the past few decades, and the tooth is an important model system for many areas of research. Developmental biologists have exploited the clear distinction between the epithelium and the underlying mesenchyme during tooth development to elucidate reciprocal epithelial/mesenchymal interactions during organogenesis. The preservation of teeth in the fossil record makes these small organs essential for the work of paleontologists, anthropologists, and evolutionary biologists. In addition, with the recent identification and characterization of dental stem cells, teeth have become of interest to the field of regenerative medicine. Here, we review the major research areas and studies in the development and evolution of teeth, including morphogenesis, genetics and signaling, evolution of tooth development, and dental stem cells. Brief discussions of microRNAs and human disease as they apply to teeth are also included.
PMCID: PMC3632217  PMID: 24009032
12.  Bmi1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor 
Nature cell biology  2013;15(7):846-852.
The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs1, 2. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell cycle inhibitors p16ink4a and p19Arf3. However, deletion of Ink4a/Arf only partially rescues Bmi1 null phenotypes4, indicating that other important targets of BMI1 exist. Here, using the continuously-growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression, and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated1, 2, 5–7, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation.
PMCID: PMC3735916  PMID: 23728424
13.  Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey 
The identification and characterization of stem cells is a major focus of developmental biology and regenerative medicine. The advent of genetic inducible fate mapping techniques has made it possible to precisely label specific cell populations and to follow their progeny over time. When combined with advanced mathematical and statistical methods, stem cell division dynamics can be studied in new and exciting ways. Despite advances in a number of tissues, relatively little attention has been paid to stem cells in the oral epithelium. This review will focus on current knowledge about adult oral epithelial stem cells, paradigms in other epithelial stem cell systems that could facilitate new discoveries in this area and the potential roles of epithelial stem cells in oral disease.
PMCID: PMC3967329  PMID: 23887128
cancer stem cell; invariant asymmetry; neutral drift; oral epithelial stem cell; population asymmetry
14.  Sox2+ Stem Cells Contribute to All Epithelial Lineages of the Tooth via Sfrp5+ Progenitors 
Developmental cell  2012;23(2):317-328.
The continuously growing mouse incisor serves as a valuable model to study stem cell regulation during organ renewal. Epithelial stem cells are localized in the proximal end of the incisor in the labial cervical loop. Here, we show that the transcription factor Sox2 is a specific marker for these stem cells. Sox2+ cells became restricted to the labial cervical loop during tooth morphogenesis, and they contributed to the renewal of enamel-producing ameloblasts as well as all other epithelial cell lineages of the tooth. The early progeny of Sox2-positive stem cells transiently expressed the Wnt inhibitor Sfrp5. Sox2 expression was regulated by the tooth initiation marker FGF8 and specific miRNAs, suggesting a fine-tuning to maintain homeostasis of the dental epithelium. The identification of Sox2 as a marker for the dental epithelial stem cells will facilitate further studies on their lineage segregation and differentiation during tooth renewal.
PMCID: PMC3690347  PMID: 22819339
15.  A genome-wide association study identifies susceptibility loci for non-syndromic sagittal craniosynostosis near BMP2 and within BBS9 
Nature genetics  2012;44(12):1360-1364.
Sagittal craniosynostosis is the most common form of craniosynostosis, affecting approximately one of 5,000 newborns. We conducted the first genome-wide association study (GWAS) for non-syndromic sagittal craniosynostosis (sNSC) using 130 non-Hispanic white (NHW) case-parent trios. Robust associations were observed in a 120 kb region downstream of BMP2, flanked by rs1884302 (P = 1.13 × 10−14; odds ratio [OR] = 4.58) and rs6140226 (P = 3.40 × 10−11; OR = 0.24) and within a 167 kb region of BBS9 between rs10262453 (P = 1.61 × 10−10; OR=0.19) and rs17724206 (P = 1.50 × 10−8; OR = 0.22). We replicated the associations to both loci [rs1884302 (P = 4.39 × 10−31); rs10262453 (P = 3.50 × 10−14)] in an independent NHW population of 172 unrelated sNSC probands and 548 controls. Both BMP2 and BBS9 are genes with a role in skeletal development warranting functional studies to further understand the etiology of sNSC.
PMCID: PMC3736322  PMID: 23160099
genome-wide association study; non-syndromic sagittal craniosynostosis; BMP2; BBS9; meta-analysis; nonsyndromic
16.  Sprouty genes regulate proliferation and survival of human embryonic stem cells 
Scientific Reports  2013;3:2277.
Sprouty (Spry) genes encode negative regulators of receptor tyrosine kinase (RTK) signaling, which plays important roles in human embryonic stem cells (hESCs). SPRY2 and SPRY4 are the two most highly expressed Sprouty family members in hESCs, suggesting that they may influence self-renewal. To test this hypothesis, we performed siRNA-mediated knock down (KD) studies. SPRY2 KD resulted in increased cell death and decreased proliferation, whereas SPRY4 KD enhanced survival. In both cases, after KD the cells were able to differentiate into cells of the three germ layers, although after SPRY2 KD there was a tendency toward increased ectodermal differentiation. SPRY2 KD cells displayed impaired mitochondrial fusion and cell membrane damage, explaining in part the increased cell death. These data indicate that Sprouty genes regulate pathways involved in proliferation and cell death in hESCs.
PMCID: PMC3721083  PMID: 23880645
17.  Stem Cell and Biomaterials Research in Dental Tissue Engineering and Regeneration 
Dental clinics of North America  2012;56(3):495-520.
PMCID: PMC3494412  PMID: 22835534
Tissue engineering; Regenerative medicine; Dental tissues; Scaffold
18.  E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor 
Developmental biology  2012;366(2):357-366.
Stem cells are essential for the regeneration and homeostasis of many organs, such as tooth, hair, skin, and intestine. Although human tooth regeneration is limited, a number of animals have evolved continuously growing teeth that provide models of stem cell-based organ renewal. A well-studied model is the mouse incisor, which contains dental epithelial stem cells in structures known as cervical loops. These stem cells produce progeny that proliferate and migrate along the proximo-distal axis of the incisor and differentiate into enamel-forming ameloblasts. Here, we studied the role of E-cadherin in behavior of the stem cells and their progeny. Levels of E-cadherin are highly dynamic in the incisor, such that E-cadherin is expressed in the stem cells, downregulated in the transit-amplifying cells, re-expressed in the pre-ameloblasts and then downregulated again in the ameloblasts. Conditional inactivation of E-cadherin in the cervical loop led to decreased numbers of label-retaining stem cells, increased proliferation, and decreased cell migration in the mouse incisor. Using both genetic and pharmacological approaches, we showed that Fibroblast Growth Factors regulate E-cadherin expression, cell proliferation and migration in the incisor. Together, our data indicate that E-cadherin is an important regulator of stem cells and their progeny during growth of the mouse incisor.
PMCID: PMC3690274  PMID: 22537490
E-cadherin; Epithelial stem cells; Cell migration; Cell proliferation; Incisor; Ameloblasts; Fibroblast Growth factors (FGFs); Sprouty genes; Mouse
19.  Lgr5 expressing cells are sufficient and necessary for postnatal mammary gland organogenesis 
Cell reports  2013;3(1):70-78.
Mammary epithelial stem cells are vital to tissue expansion and remodeling during various phases of postnatal mammary development. Basal mammary epithelial cells are enriched in Wnt-responsive cells and can reconstitute cleared mammary fat pads upon transplantation into mice. Lgr5 is a Wnt-regulated target gene and was identified as a major stem cell marker in the small intestine, colon, stomach, hair follicle and also in kidney nephrons. Here we demonstrate the outstanding regenerative potential of a rare population of Lgr5-expressing (Lgr5+) mammary epithelial cells (MECs). We found that Lgr5+ cells reside within the basal population, are superior to other basal cells in regenerating functional mammary glands (MGs), are exceptionally efficient in reconstituting MGs from single cells and exhibit regenerative capacity in serial transplantations. Loss-of-function, depletion experiments of Lgr5+ cells from transplanted MECs or from pubertal MGs revealed that these cells are not only sufficient but also necessary for postnatal mammary organogenesis.
PMCID: PMC3563842  PMID: 23352663
Lgr5; stem cell; mammary gland; regenerative potential
20.  microRNA miR-34a Regulates Cytodifferentiation and Targets Multi-signaling Pathways in Human Dental Papilla Cells 
PLoS ONE  2012;7(11):e50090.
Odontogenesis relies on the reciprocal signaling interactions between dental epithelium and neural crest-derived mesenchyme, which is regulated by several signaling pathways. Subtle changes in the activity of these major signaling pathways can have dramatic effects on tooth development. An important regulator of such subtle changes is the fine tuning function of microRNAs (miRNAs). However, the underlying mechanism by which miRNAs regulate tooth development remains elusive. This study determined the expression of miRNAs during cytodifferentiation in the human tooth germ and studied miR-34a as a regulator of dental papilla cell differentiation. Using microarrays, miRNA expression profiles were established at selected times during development (early bell stage or late bell stage) of the human fetal tooth germ. We identified 29 differentially expressed miRNAs from early bell stage/late bell stage comparisons. Out of 6 miRNAs selected for validation by qPCR, all transcripts were confirmed to be differentially expressed. miR-34a was selected for further investigation because it has been previously reported to regulate organogenesis. miR-34a mimics and inhibitors were transfected into human fetal dental papilla cells, mRNA levels of predicted target genes were detected by quantitative real-time PCR, and levels of putative target proteins were examined by western blotting. ALP and DSPP expression were also tested by qPCR, western blotting, and immunofluorescence. Findings from these studies suggested that miR-34a may play important roles in dental papilla cell differentiation during human tooth development by targeting NOTCH and TGF-beta signaling.
PMCID: PMC3511455  PMID: 23226240
21.  Expression of MicroRNAs in the Stem Cell Niche of the Adult Mouse Incisor 
PLoS ONE  2011;6(9):e24536.
The mouse incisor is a valuable but under-utilized model organ for studying the behavior of adult stem cells. This remarkable tooth grows continuously throughout the animal's lifetime and houses two distinct epithelial stem cell niches called the labial and lingual cervical loop (laCL and liCL, respectively). These stem cells produce progeny that undergo a series of well-defined differentiation events en route to becoming enamel-producing ameloblasts. During this differentiation process, the progeny move out of the stem cell niche and migrate toward the distal tip of the tooth. Although the molecular pathways involved in tooth development are well documented, little is known about the roles of miRNAs in this process. We used microarray technology to compare the expression of miRNAs in three regions of the adult mouse incisor: the laCL, liCL, and ameloblasts. We identified 26 and 35 differentially expressed miRNAs from laCL/liCL and laCL/ameloblast comparisons, respectively. Out of 10 miRNAs selected for validation by qPCR, all transcripts were confirmed to be differentially expressed. In situ hybridization and target prediction analyses further supported the reliability of our microarray results. These studies point to miRNAs that likely play a role in the renewal and differentiation of adult stem cells during stem cell-fueled incisor growth.
PMCID: PMC3169592  PMID: 21931743
22.  FGF Signaling Regulates the Number of Posterior Taste Papillae by Controlling Progenitor Field Size 
PLoS Genetics  2011;7(6):e1002098.
The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP). Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry) genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK) signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1−/−;Spry2−/− embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.
Author Summary
The sense of taste is important for an animal's ability to survive and thrive, because it enables discrimination between nutritious substances and toxins. Taste buds are housed largely on the tongue in structures called papillae; of the three types of gustatory papillae, the circumvallate papilla (CVP) is the largest. In rodents, a single CVP is located in the posterior midline of the tongue housing hundreds of taste buds, whereas in other mammals up to dozens of CVPs can be found. However, despite the great variation in the number of CVPs in mammals, its status as the largest of the taste papillae, and its importance in taste function, very little is known about its development. We identified members of the FGF signaling pathway as determinants of CVP number. We propose that perturbations to the FGF signaling pathway may have been involved in the dramatic differences in CVP number that arose during mammalian evolution.
PMCID: PMC3107195  PMID: 21655085
23.  Dact1-3 mRNAs exhibit distinct expression domains during tooth development 
Gene expression patterns : GEP  2010;10(2-3):140-143.
Wnt signaling is essential for tooth formation. Dact proteins modulate Wnt signaling by binding to the intracellular protein Dishevelled (Dvl). Comparison of all known mouse Dact genes, Dact1-3, from the morphological initiation of mandibular first molar development after the onset of the root formation using sectional in situ hybridization showed distinct, complementary and overlapping expression patterns for the studied genes. While Dact2 expression was restricted to the dental epithelium including the enamel knot signaling centers and tooth specific preameloblasts, Dact1 and Dact3 showed developmentally regulated expression in the dental mesenchyme. Both mRNAs were first detected in the presumptive dental mesenchyme. After being downregulated from the condensed dental mesenchyme of the bud stage tooth germ, Dact1 was upregulated in the dental follicle masenchyme at the cap stage and subsequently also in the dental papilla at the bell stage where the expression persisted to the postnatal stages. In contrast, Dact3 transcripts persisted throughout the dental mesenchymal tissue components including the tooth-specific cells, preodontoblasts before transcripts were largely downregulated from the tooth germ postnatally. Collectively these results suggest that Dact1 and -3 may contribute to early tooth formation by modulation of Wnt signaling pathways in the mesenchyme, including preodontoblasts, whereas Dact2 may play important signal-modulating roles in the adjacent epithelial cells including the enamel knot signaling centers and preameloblasts. Future loss-of-function studies will help elucidate whether any of these functions are redundant, particularly for Dact1 and Dact3.
PMCID: PMC2849867  PMID: 20170752
24.  The Branching Program of Mouse Lung Development 
Nature  2008;453(7196):745-750.
Mammalian lungs are branched networks containing thousands to millions of airways arrayed in intricate patterns that are crucial for respiration. How such trees are generated during development, and how the developmental patterning information is encoded, have long fascinated biologists and mathematicians. However, models have been limited by a lack of information on the normal sequence and pattern of branching events. Here we present the complete three-dimensional branching pattern and lineage of the mouse bronchial tree, reconstructed from an analysis of hundreds of developmental intermediates. The branching process is remarkably stereotyped and elegant: the tree is generated by three geometrically simple local modes of branching used in three different orders throughout the lung. We propose that each mode of branching is controlled by a genetically-encoded subroutine, a series of local patterning and morphogenesis operations, which are themselves controlled by a more global master routine. We show that this hierarchical and modular program is genetically tractable, and it is ideally suited to encoding and evolving the complex networks of the lung and other branched organs.
PMCID: PMC2892995  PMID: 18463632
25.  Sprouty Genes Control Diastema Tooth Development via Bidirectional Antagonism of Epithelial-Mesenchymal FGF Signaling 
Developmental cell  2006;11(2):181-190.
Unlike humans, who have a continuous row of teeth, mice have only molars and incisors separated by a toothless region called a diastema. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. Here, we identify members of the Sprouty (Spry) family, which encode negative feedback regulators of fibroblast growth factor (FGF) and other receptor tyrosine kinase signaling, as genes that repress diastema tooth development. We show that different Sprouty genes are deployed in different tissue compartments—Spry2 in epithelium and Spry4 in mesenchyme—to prevent diastema tooth formation. We provide genetic evidence that they function to ensure that diastema tooth buds are refractory to signaling via FGF ligands that are present in the region and thus prevent these buds from engaging in the FGF-mediated bidirectional signaling between epithelium and mesenchyme that normally sustains tooth development.
PMCID: PMC2847684  PMID: 16890158

Results 1-25 (27)