Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Unfavorable Prognosis of CRTC1-MAML2 Positive Mucoepidermoid Tumors with CDKN2A Deletions 
Genes, chromosomes & cancer  2010;49(1):59-69.
The CRTC1-MAML2 fusion oncogene underlies the etiology of mucoepidermoid salivary gland carcinoma (MEC) where it confers a favorable survival outcome as compared with fusion-negative MEC. While these analyses suggested that detection of CRTC1-MAML2 serves as a useful prognostic biomarker, we recently identified outlier cases of fusion-positive MEC associated with advanced-staged lethal disease. To identify additional genetic alterations that might cooperate with CRTC1-MAML2 to promote disease progression, we performed a pilot high-resolution oligonucleotide array CGH (aCGH) and PCR-based genotyping study on 23 MEC samples including14 fusion-positive samples for which we had clinical outcome information. Unbiased aCGH analysis identified inactivating deletions within CDKN2A as a candidate poor prognostic marker which was confirmed by PCR-based analysis (CDKN2A deletions in 5/5 unfavorable fusion-positive cases and 0/9 favorable fusion-positive cases). We did not detect either activating EGFR mutations, nor copy number gains at the EGFR or ERBB2 loci as poor prognostic features for fusion-positive MEC in any of the tumor specimens. Prospective studies with larger case series will be needed to confirm that combined CRTC1-MAML2 and CDKN2A genotyping will optimally stage this disease.
PMCID: PMC2783528  PMID: 19827123
2.  Characterization of tumorigenic cell lines from the recurrence and lymph node metastasis of a human salivary mucoepidermoid carcinoma 
Oral oncology  2013;49(11):10.1016/j.oraloncology.2013.08.004.
The long-term outcome of patients with mucoepidermoid carcinoma is poor. Limited availability of cell lines and lack of xenograft models is considered a major barrier to improved mechanistic understanding of this disease and development of effective therapies.
To generate and characterize human mucoepidermoid carcinoma cell lines and xenograft models suitable for mechanistic and translational studies.
Five human mucoepidermoid carcinoma specimens were available for generation of cell lines. Cell line tumorigenic potential was assessed by transplantation and serial in vivo passaging in immunodeficient mice, and cell line authenticity verified by short tandem repeat (STR) profiling.
A unique pair of mucoepidermoid carcinoma cell lines was established from a local recurrence (UM-HMC-3A) and from the metastatic lymph node (UM-HMC-3B) of the same patient, 4 years after surgical removal of the primary tumor. These cell lines retained epithelial-like morphology through 100 passages in vitro, contain the Crtc1-Maml2 fusion oncogene (characteristic of mucoepidermoid carcinomas), and express the prototypic target of this fusion (NR4A2). Both cell lines generated xenograft tumors when transplanted into immunodeficient mice. Notably, the xenografts exhibited histological features and Periodic Acid Schiff (PAS) staining patterns that closely resembled those found in human tumors. STR profiling confirmed the origin and authenticity of these cell lines.
These data demonstrate the generation and characterization of a pair of tumorigenic salivary mucoepidermoid carcinoma cell lines representative of recurrence and lymph node metastasis. Such models are useful for mechanistic and translational studies that might contribute to the discovery of new therapies for mucoepidermoid carcinoma.
PMCID: PMC3821871  PMID: 24035723
Mouse models; Salivary gland cancer; Xenograft; Oral cancer; Crtc1-Maml2; Tumor recurrence; Metastasis
3.  Defining a Candidate Lung Cancer Gene 
PMCID: PMC3299211  PMID: 19001597
4.  Low-penetrant RB allele in small-cell cancer shows geldanamycin instability and discordant expression with mutant ras 
Cell cycle (Georgetown, Tex.)  2008;7(15):2384-2391.
Certain kindreds with low-penetrant (lp) retinoblastoma carry mutant alleles which retain partial tumor suppressor activity and we previously showed that these alleles exhibit defective, temperature-sensitive binding in yeast. To investigate the molecular basis for incomplete penetrance, we studied three recurrent lp alleles and observed approximately 50% of wildtype activity measured by i) phosphorylation at key regulatory sites, S780, S795, S807/S811, ii) transcriptional co-activation, and iii) ‘flat-cell’ differentiation in mammalian cells in vivo. In addition, we studied a small-cell carcinoma that is homozygous for the R661W allele providing the first analysis of the effect of a naturally occurring lp allele in a human tumor. While we detected abundant expression of the R661W protein, we noted marked instability of both endogenous and recombinant R661W following treatment in vivo with the Hsp90 inhibitor, geldanamycin, and stabilization of R661W following heat shock. In addition, we observed a discordant phenotype in the tumor cells with induction of p16 and loss of cyclin D1 consistent with a null RB status combined with homozygous expression of mutant ras which had not been reported previously for RB (-) small-cell cancer. These findings show that a recurrent missense lp allele retains greater functional activity in vivo than predicted from earlier in vitro assays, proposing a role for stabilizing chaperone-like activity in vivo. In addition, these data suggest that reversible protein instability and the requirement for a cooperating mutation may provide a stochastic explanation for the molecular basis of incomplete penetrance in kindreds carrying these alleles.
PMCID: PMC2562607  PMID: 18677112
low penetrance; retinoblastoma; Hsp90 inhibition; geldanamycin; small-cell cancer
5.  Integrated high-resolution array CGH and SKY analysis of homozygous deletions and other genomic alterations present in malignant mesothelioma cell lines 
Cancer genetics  2013;206(5):191-205.
High-resolution oligonucleotide array comparative genomic hybridization (aCGH) and spectral karyotyping (SKY) were applied to a panel of malignant mesothelioma (MMt) cell lines. SKY has not been applied to MMt before, and complete karyotypes are reported based on the integration of SKY and aCGH results. A whole genome search for homozygous deletions (HDs) produced the largest set of recurrent and non-recurrent HDs for MMt (52 recurrent HDs in 10 genomic regions; 36 non-recurrent HDs). For the first time, LINGO2, RBFOX1/A2BP1, RPL29, DUSP7, and CCSER1/FAM190A were found to be homozygously deleted in MMt, and some of these genes could be new tumor suppressor genes for MMt. Integration of SKY and aCGH data allowed reconstruction of chromosomal rearrangements that led to the formation of HDs. Our data imply that only with acquisition of structural and/or numerical karyotypic instability can MMt cells attain a complete loss of tumor suppressor genes located in 9p21.3, which is the most frequently homozygously deleted region. Tetraploidization is a late event in the karyotypic progression of MMt cells, after HDs in the 9p21.3 region have already been acquired.
PMCID: PMC4030604  PMID: 23830731
Malignant mesothelioma; oligonucleotide array CGH; spectral karyotyping; homozygous deletions; tumor suppressors
6.  CRTC1 Expression during Normal and Abnormal Salivary Gland Development Supports a Precursor Cell Origin for Mucoepidermoid Cancer 
Gene expression patterns : GEP  2010;11(1-2):57-63.
Dysregulation of the transcription factor CRTC1 by a t(11;19) chromosomal rearrangement mediates the formation of mucoepidermoid salivary gland carcinoma (MEC). Although the Crtc1 promoter is consistently active in fusion-positive MEC and low levels of Crtc1 transcripts have been reported in normal adult salivary glands, the distribution of CRTC1 protein in the normal salivary gland is not known. The aim of this study was to determine if CRTC1, like many known oncogenes, is expressed during early submandibular salivary gland (SMG) development and re-expressed in an experimental tumor model. Our results indicate that CRTC1 protein is expressed in SMG epithelia during early stages of morphogenesis, disappears with differentiation, and reappears in initial tumor-like pathology. This stage-dependent expression pattern suggests that CRTC1 may play a role during embryonic SMG branching morphogenesis but not for pro-acinar/acinar differentiation, supporting a precursor cell origin for MEC tumorigenesis. Moreover, the coincident expression of CRTC1 protein and cell proliferation markers in tumor-like histopathology suggests that CRTC1-mediated cell proliferation may contribute, in part, to initial tumor formation.
PMCID: PMC3033996  PMID: 20837164
CREB coactivator; CRTC1; salivary glands; development; tumorigenesis; cell proliferation; mucoepidermoid carcinoma
7.  The landscape of somatic copy-number alteration across human cancers 
Nature  2010;463(7283):899-905.
A powerful way to discover key genes playing causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here, we report high-resolution analyses of somatic copy-number alterations (SCNAs) from 3131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across multiple cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κB pathway. We show that cancer cells harboring amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend upon expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in multiple cancer types.
PMCID: PMC2826709  PMID: 20164920
8.  Disruption of Myc-Tubulin Interaction by Hyperphosphorylation of c-Myc during Mitosis or by Constitutive Hyperphosphorylation of Mutant c-Myc in Burkitt's Lymphoma 
Molecular and Cellular Biology  2000;20(14):5276-5284.
Somatic mutations at Thr-58 of c-Myc have been detected in Burkitt's lymphoma (BL) tumors and have been shown to affect the transforming potential of the Myc oncoprotein. In addition, the N-terminal domain of c-Myc has been shown to interact with microtubules in vivo, and the binding of c-Myc to α-tubulin was localized to amino acids 48 to 135 within the c-Myc protein. We demonstrate that c-Myc proteins harboring a naturally occurring mutation at Thr-58 from BL cell lines have increased stability and are constitutively hyperphosphorylated, which disrupts the in vivo interaction of c-Myc with α-tubulin. In addition, we show that wild-type c-Myc–α-tubulin interactions are also disrupted during a transient mitosis-specific hyperphosphorylation of c-Myc, which resembles the constitutive hyperphosphorylation pattern of Thr-58 in BL cells.
PMCID: PMC85977  PMID: 10866684

Results 1-8 (8)