PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish 
Developmental biology  2006;302(2):504-521.
Pax3/7 paired homeodomain transcription factors are important markers of muscle stem cells. Pax3 is required upstream of myod for lateral dermomyotomal cells in the amniote somite to form particular muscle cells. Later Pax3/7-dependent cells generate satellite cells and most body muscle. Here we analyse early myogenesis from, and regulation of, a population of Pax3-expressing dermomyotome-like cells in the zebrafish. Zebrafish pax3 is widely expressed in the lateral somite and, along with pax7, becomes restricted anteriorly and then to the external cells on the lateral somite surface. Midline-derived Hedgehog signals appear to act directly on lateral somite cells to repress Pax3/7. Both Hedgehog and Fgf8, signals that induce muscle formation within the somite, suppress Pax3/7 and promote expression of myogenic regulatory factors (MRFs) myf5 and myod in specific muscle precursor cell populations. Loss of MRF function leads to loss of myogenesis by specific populations of muscle fibres, with parallel up-regulation of Pax3/7. Myod is required for lateral fast muscle differentiation from pax3-expressing cells. In contrast, either Myf5 or Myod is sufficient to promote slow muscle formation from adaxial cells. Thus, myogenic signals act to drive somite cells to a myogenic fate through up-regulation of distinct combinations of MRFs. Our data show that the relationship between Pax3/7 genes and myogenesis is evolutionarily ancient, but that changes in the MRF targets for particular signals contribute to myogenic differences between species.
doi:10.1016/j.ydbio.2006.10.009
PMCID: PMC3960072  PMID: 17094960
Pax3; Pax7; muscle; zebrafish; hedgehog; somite; fgf8; dermomyotome; myf5; myod; col1a2; dlx2a; sox10
2.  Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation 
Developmental biology  2012;369(2):199-210.
Summary
Mef2 transcription factors have been strongly linked with early heart development. D-mef2 is required for heart formation in Drosophila, but whether Mef2 is essential for vertebrate cardiomyocyte (CM) differentiation is unclear. In mice, although Mef2c is expressed in all CMs, targeted deletion of Mef2c causes lethal loss of second heart field (SHF) derivatives and failure of cardiac looping, but first heart field CMs can differentiate. Here we examine Mef2 function in early heart development in zebrafish. Two Mef2c genes exist in zebrafish, mef2ca and mef2cb. Both are expressed similarly in the bilateral heart fields but mef2cb is strongly expressed in the heart poles at the primitive heart tube stage. By using fish mutants for mef2ca and mef2cb and antisense morpholinos to knock down either or both Mef2cs, we show that Mef2ca and Mef2cb have essential but redundant roles in myocardial differentiation. Loss of both Mef2ca and Mef2cb function does not interfere with early cardiogenic markers such as nkx2.5, gata4 and hand2 but results in a dramatic loss of expression of sarcomeric genes and myocardial markers such as bmp4, nppa, smyd1b and late nkx2.5 mRNA. Rare residual CMs observed in mef2ca;mef2cb double mutants are ablated by a morpholino capable of knocking down other Mef2s. Mef2cb over-expression activates bmp4 within the cardiogenic region, but no ectopic CMs are formed. Surprisingly, anterior mesoderm and other tissues become skeletal muscle. Mef2ca single mutants have delayed heart development, but form an apparently normal heart. Mef2cb single mutants have a functional heart and are viable adults. Our results show that the key role of Mef2c in myocardial differentiation is conserved throughout the vertebrate heart.
doi:10.1016/j.ydbio.2012.06.019
PMCID: PMC3927553  PMID: 22750409
Second heart field; mef2c; mef2ca; mef2cb; mef2a; Heart; Hand2; Myl7; bulbus arteriosus; outflow tract; cardiomyocyte; differentiation
3.  eIF4EBP3L Acts as a Gatekeeper of TORC1 In Activity-Dependent Muscle Growth by Specifically Regulating Mef2ca Translational Initiation 
PLoS Biology  2013;11(10):e1001679.
Muscle activity promotes muscle growth through the TOR-4EBP pathway by controlling the translation of specific mRNAs, including Mef2ca, a muscle transcription factor required for normal growth.
Muscle fiber size is activity-dependent and clinically important in ageing, bed-rest, and cachexia, where muscle weakening leads to disability, prolonged recovery times, and increased costs. Inactivity causes muscle wasting by triggering protein degradation and may simultaneously prevent protein synthesis. During development, muscle tissue grows by several mechanisms, including hypertrophy of existing fibers. As in other tissues, the TOR pathway plays a key role in promoting muscle protein synthesis by inhibition of eIF4EBPs (eukaryotic Initiation Factor 4E Binding Proteins), regulators of the translational initiation. Here, we tested the role of TOR-eIF4EBP in a novel zebrafish muscle inactivity model. Inactivity triggered up-regulation of eIF4EBP3L (a zebrafish homolog of eIF4EBP3) and diminished myosin and actin content, myofibrilogenesis, and fiber growth. The changes were accompanied by preferential reduction of the muscle transcription factor Mef2c, relative to Myod and Vinculin. Polysomal fractionation showed that Mef2c decrease was due to reduced translation of mef2ca mRNA. Loss of Mef2ca function reduced normal muscle growth and diminished the reduction in growth caused by inactivity. We identify eIF4EBP3L as a key regulator of Mef2c translation and protein level following inactivity; blocking eIF4EBP3L function increased Mef2ca translation. Such blockade also prevented the decline in mef2ca translation and level of Mef2c and slow myosin heavy chain proteins caused by inactivity. Conversely, overexpression of active eIF4EBP3L mimicked inactivity by decreasing the proportion of mef2ca mRNA in polysomes, the levels of Mef2c and slow myosin heavy chain, and myofibril content. Inhibiting the TOR pathway without the increase in eIF4EBP3L had a lesser effect on myofibrilogenesis and muscle size. These findings identify eIF4EBP3L as a key TOR-dependent regulator of muscle fiber size in response to activity. We suggest that by selectively inhibiting translational initiation of mef2ca and other mRNAs, eIF4EBP3L reprograms the translational profile of muscle, enabling it to adjust to new environmental conditions.
Author Summary
Most genes are transcribed into mRNA and then translated into proteins that function in various cellular processes. Initiation of mRNA translation is thus a fundamental control point in gene expression. Working in a zebrafish model, we have found that muscle activity (or inactivity) can differentially regulate the translation of specific mRNAs and thereby control the growth of skeletal muscle. Emerging evidence suggests that control of translational initiation of particular mRNAs by an intracellular signaling pathway acting through TORC1 is a major regulator of cell growth and function. We show here that muscle activity both activates the TORC1 pathway and suppresses the expression of a downstream TORC1 target—the translational inhibitor eIF4EBP3L. This removes a brake on translation of certain mRNAs. Conversely, we show that muscle inactivity can up-regulate this translational inhibitor, thereby causing reduced translation of these mRNAs. One of the mRNAs targeted in this manner by eIF4EBP3L is Mef2ca, which encodes a transcription factor that promotes assembly of muscle contractile apparatus. Our work thus reveals a mechanism by which muscle growth can be differentially influenced depending on the context of muscle activity (or lack thereof). If this pathway operates in people, it may help explain how exercise regulates muscle growth and performance.
doi:10.1371/journal.pbio.1001679
PMCID: PMC3797031  PMID: 24143132
4.  Dystrobrevin and dystrophin family gene expression in zebrafish 
Dystrophin/dystrobrevin superfamily proteins play structural and signalling roles at the plasma membrane of many cell types. Defects in them or the associated multiprotein complex cause a range of neuromuscular disorders. Members of the dystrophin branch of the family form heterodimers with members of the dystrobrevin branch, mediated by their coiled-coil domains. To determine which combinations of these proteins might interact during embryonic development, we set out to characterise the gene expression pattern of dystrophin and dystrobrevin family members in zebrafish. γ-dystrobrevin (dtng), a novel dystrobrevin recently identified in fish, is the predominant form of dystrobrevin in embryonic development. Dtng and dmd (dystrophin) have similar spatial and temporal expression patterns in muscle, where transcripts are localized to the ends of differentiated fibres at the somite borders. Dtng is expressed in the notochord while dmd is expressed in the chordo-neural hinge and then in floor plate and hypochord. In addition, dtng is dynamically expressed in rhombomeres 2 and 4-6 of the hindbrain and in the ventral midbrain. α-dystrobrevin (dtna) is expressed widely in the brain with particularly strong expression in the hypothalamus and the telencephalon; drp2 is also expressed widely in the brain. Utrophin expression is found in early pronephros and lateral line development and utrophin and dystrophin are both expressed later in the gut. β-dystrobrevin (dtnb) is expressed in the pronephric duct and widely at low levels. In summary, we find clear instances of co-expression of dystrophin and dystrobrevin family members in muscle, brain and pronephric duct development and many examples of strong and specific expression of members of one family but not the other, an intriguing finding given the presumed heterodimeric state of these molecules.
doi:10.1016/j.modgep.2007.10.004
PMCID: PMC3360968  PMID: 18042440
muscle; zebrafish; notochord; midbrain; rhombomere; gene expression; utrophin; dystrophin; dystrobrevin; drp2; dystrotelin
5.  Defective cranial skeletal development, larval lethality and haploinsufficiency in Myod mutant zebrafish 
Developmental biology  2011;358(1):102-112.
Summary
Myogenic regulatory factors of the myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. Here we show that a mutation in the zebrafish myod gene delays and reduces early somitic and pectoral fin myogenesis, reduces miR-206 expression, and leads to a persistent reduction in somite size until at least the independent feeding stage. A mutation in myog, encoding a second MRF, has little obvious phenotype at early stages, but exacerbates the loss of somitic muscle caused by lack of Myod. Mutation of both myod and myf5 ablates all skeletal muscle. Haploinsufficiency of myod leads to reduced embryonic somite muscle bulk. Lack of Myod causes a severe reduction in cranial musculature, ablating most muscles including the protractor pectoralis, a putative cucullaris homologue. This phenotype is accompanied by a severe dysmorphology of the cartilaginous skeleton and failure of maturation of several cranial bones, including the opercle. As myod expression is restricted to myogenic cells, the data show that myogenesis is essential for proper skeletogenesis in the head.
doi:10.1016/j.ydbio.2011.07.015
PMCID: PMC3360969  PMID: 21798255
muscle; zebrafish; myosin; slow; fiber; fast; myod; myogenin; myf5; miR-206; skeleton; bone; cartilage; head; fin; haploinsufficiency
6.  Cdkn1c drives muscle differentiation through a positive feedback loop with Myod 
Developmental biology  2010;350(2):464-475.
Differentiation often requires conversion of analogue signals to a stable binary output through positive feedback. Hedgehog (Hh) signalling promotes myogenesis in the vertebrate somite, in part by raising the activity of muscle regulatory factors (MRFs) of the Myod family above a threshold. Hh is known to enhance MRF expression. Here we show that Hh is also essential at a second step that increases Myod protein activity, permitting it to promote Myogenin expression. Hh acts by inducing expression of cdkn1c (p57Kip2) in slow muscle precursor cells, but neither Hh nor Cdkn1c is required for their cell cycle exit. Cdkn1c co-operates with Myod to drive differentiation of several early zebrafish muscle fibre types. Myod in turn up-regulates cdkn1c, thereby providing a positive feedback loop that switches myogenic cells to terminal differentiation.
doi:10.1016/j.ydbio.2010.12.010
PMCID: PMC3044464  PMID: 21147088
muscle; Cdkn1c; zebrafish; Hedgehog; myod; myog; p57kip2
7.  Mef2s are required for thick filament formation in nascent muscle fibres 
Development (Cambridge, England)  2007;134(13):2511-2519.
During skeletal muscle differentiation, the actomyosin motor is assembled into myofibrils, multiprotein machines that generate and transmit force to cell ends. How expression of muscle proteins is coordinated to build the myofibril is unknown. Here we show that zebrafish Mef2d and Mef2c proteins are required redundantly for assembly of myosin-containing thick filaments in nascent muscle fibres, but not for the earlier steps of skeletal muscle fibre differentiation, elongation, fusion or thin filament gene expression. Mef2d mRNA and protein is present in myoblasts, whereas mef2c expression commences in muscle fibres. Knockdown of both Mef2 proteins with antisense morpholino oligonucleotides or in mutant fish blocks muscle function and prevents sarcomere assembly. Cell transplantation and heat-shock-driven rescue reveal a cell autonomous requirement for Mef2 within fibres. In nascent fibres, Mef2 drives expression of genes encoding thick, but not thin, filament proteins. Among genes analysed, myosin heavy and light chains and myosin binding protein C require Mef2 for normal expression, whereas actin, tropomyosin and troponin do not. Our findings show that Mef2 controls skeletal muscle formation after terminal differentiation and define a new maturation step in vertebrate skeletal muscle development at which thick filament gene expression is controlled.
doi:10.1242/dev.007088
PMCID: PMC3016612  PMID: 17537787
Mef2c; Mef2d; hoover; myosin; muscle; zebrafish; myofibril; somite; tnnc; myogenin; prdm1; eng2a; acta1; actc; smyhc1; myhz1; tpma; smbpc; hsp90a
8.  Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle 
Gene expression patterns : GEP  2007;7(7):738-745.
Mrf4 (Myf6) is a basic helix-loop-helix (bHLH) myogenic regulatory transcription factor (MRF) family which also contains Myod, Myf5 and myogenin. Mrf4 is implicated in commitment of amniote cells to skeletal myogenesis and is also abundantly expressed in many adult muscle fibres. The specific role of Mrf4 is unclear both because mrf4 null mice are viable, suggesting redundancy with other MRFs, and because of genetic interactions at the complex mrf4/myf5 locus. We report the cloning and expression of an mrf4 gene from zebrafish, Danio rerio, which shows conservation of linkage to myf5. Mrf4 mRNA accumulates in a subset of terminally differentiated muscle fibres in parallel with myosin protein in the trunk and fin. Although most, possibly all, trunk muscle expresses mrf4, the level of mRNA is dynamically regulated. No expression is detected in muscle precursor cell populations prior to myosin accumulation. Moreover, mrf4 expression is not detected in head muscles, at least at early stages. As fish mature, mrf4 expression is pronounced in slow muscle fibres.
doi:10.1016/j.modgep.2007.06.003
PMCID: PMC3001336  PMID: 17638597
mrf4; muscle; zebrafish; muscle pioneers; muscle fibre; fin; myod; myogenin; mylz2; gene expression, craniofacial
9.  Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods 
Background
During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes.
Results
We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish.
Conclusion
Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it seems justified to consider it an appropriate representative of these two groups. Among these muscles, the three with clear homologues in tetrapods and the further three identified in sarcopterygian fish are particularly appropriate for comparisons of results between the actinopterygian zebrafish and the sarcopterygians.
doi:10.1186/1471-213X-8-24
PMCID: PMC2270811  PMID: 18307809
10.  The dystrotelin, dystrophin and dystrobrevin superfamily: new paralogues and old isoforms 
BMC Genomics  2007;8:19.
Background
Dystrophins and dystrobrevins are distantly related proteins with important but poorly understood roles in the function of metazoan muscular and neuronal tissues. Defects in them and their associated proteins cause a range of neuromuscular disorders. Members of this superfamily have been discovered in a relatively serendipitous way; we set out to compile a comprehensive description of dystrophin- and dystrobrevin-related sequences from available metazoan genome sequences, validated in representative organisms by RT-PCR, or acquired de novo from key species.
Results
Features of the superfamily revealed by our survey include: a) Dystrotelin, an entirely novel branch of the superfamily, present in most vertebrates examined. Dystrotelin is expressed in the central nervous system, and is a possible orthologue of Drosophila DAH. We describe the preliminary characterisation of its function, evolution and expression. b) A novel vertebrate member of the dystrobrevin family, γ-dystrobrevin, an ancient branch now extant only in fish, but probably present in our own ancestors. Like dystrophin, zebrafish γ-dystrobrevin mRNA is localised to myosepta. c) The extent of conservation of alternative splicing and alternative promoter use in the dystrophin and dystrobrevin genes; alternative splicing of dystrophin exons 73 and 78 and α-dystrobrevin exon 13 are conserved across vertebrates, as are the use of the Dp116, Dp71 and G-utrophin promoters; the Dp260 and Dp140 promoters are tetrapod innovations. d) The evolution of the unique N-terminus of DRP2 and its relationship to Dp116 and G-utrophin. e) A C-terminally truncated common ancestor of dystrophin and utrophin in cyclostomes. f) A severely restricted repertoire of dystrophin complex components in ascidians.
Conclusion
We have refined our understanding of the evolutionary history and isoform diversity of the five previously reported vertebrate superfamily members and describe two novel members, dystrotelin and γ-dystrobrevin. Dystrotelins, dystrophins and dystrobrevins are roughly equally related to each other. Vertebrates therefore have a repertoire of seven superfamily members (three dystrophins, three dystrobevins, and one dystrotelin), with one lost in tetrapods. Most invertebrates studied have one member from each branch. Although the basic shared function which is implied by the common architecture of these distantly related proteins remains unclear, it clearly permeates metazoan biology.
doi:10.1186/1471-2164-8-19
PMCID: PMC1790709  PMID: 17233888

Results 1-10 (10)