Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  SORLA-Dependent and -Independent Functions for PACS1 in Control of Amyloidogenic Processes 
Molecular and Cellular Biology  2013;33(21):4308-4320.
Sorting-related receptor with A-type repeats (SORLA) is a sorting receptor for the amyloid precursor protein (APP) that prevents breakdown of APP into Aβ peptides, a hallmark of Alzheimer's disease (AD). Several cytosolic adaptors have been shown to interact with the cytoplasmic domain of SORLA, thereby controlling intracellular routing of SORLA/APP complexes in cell lines. However, the relevance of adaptor-mediated sorting of SORLA for amyloidogenic processes in vivo remained unexplored. We focused on the interaction of SORLA with phosphofurin acidic cluster sorting protein 1 (PACS1), an adaptor that shuttles proteins between the trans-Golgi network (TGN) and endosomes. By studying PACS1 knockdown in neuronal cell lines and investigating transgenic mice expressing a PACS1-binding-defective mutant form of SORLA, we found that disruption of SORLA and PACS1 interaction results in the inability of SORLA/APP complexes to sort to the TGN in neurons and in increased APP processing in the brain. Loss of PACS1 also impairs the proper expression of the cation-independent mannose 6-phosphate receptor and its target cathepsin B, a protease that breaks down Aβ. Thus, our data identified the importance of PACS1-dependent protein sorting for amyloidogenic-burden control via both SORLA-dependent and SORLA-independent mechanisms.
PMCID: PMC3811889  PMID: 24001769
2.  An eEF1A1 truncation encoded by PTI-1 exerts its oncogenic effect inside the nucleus 
The oncogene PTI-1 was originally isolated from a prostate cancer cell line by its capability to transform rat fibroblasts. The PTI-1 mRNA has a very eccentric structure as the 5′UTR is similar to prokaryotic 23S rRNA, while the major open reading frame and the 3′UTR corresponds to a part of the mRNA encoding human translation elongation factor eEF1A1. Thus, the largest open reading frame encodes a truncated version of eEF1A1 lacking the first 67 amino acids, while having three unique N-terminal amino acids. Previously, the UTRs were shown to be a prerequisite for the transforming capacity of the PTI-1 transcript. In this study, we have investigated the possible role of the UTRs in regulating protein expression and localization.
The protein expression profiles of a number of PTI-1 mRNA variants were studied in vitro and in vivo. Furthermore, the oncogenic potentials of the same PTI-1 mRNAs were determined by monitoring the capacities of stably transfected cells expressing these mRNAs to induce tumors in nude mice and form foci in cell culture. Finally, the cellular localizations of PTI-1 proteins expressed from these mRNAs were determined by fluorescence microscopy.
The PTI-1 mRNA was found to give rise to multiple protein products that potentially originate from translation initiation at downstream, inframe AUGs within the major open reading frame. At least one of the truncated protein variants was also found to be oncogenic. However, the UTRs did not appear to influence the amount and identities of these truncated protein products. In contrast, our localization studies showed that the UTRs of the transcript promote a nuclear localization of the encoded protein(s).
Translation of the PTI-1 mRNA results in multiple protein products of which (a) truncated variant(s) may play a predominant role during cellular transformation. The PTI-1 UTRs did not seem to play a role in translation regulation, but appeared to contribute to a nuclear localization of the PTI-1 protein(s). This indicates that the PTI-1 protein(s) exert(s) its/their oncogenic function inside the nucleus.
PMCID: PMC3941776  PMID: 24571548
PTI-1; Oncogene; Nucleus; Localization; UTRs; Translation elongation factor
3.  Loss of Function of Slc20a2 Associated with Familial Idiopathic Basal Ganglia Calcification in Humans Causes Brain Calcifications in Mice 
Journal of Molecular Neuroscience  2013;51(3):994-999.
Familial idiopathic basal ganglia calcification (FIBGC) is a neurodegenerative disorder with neuropsychiatric and motor symptoms. Deleterious mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), were recently linked to FIBGC in almost 50 % of the families reported worldwide. Here, we show that knockout of Slc20a2 in mice causes calcifications in the thalamus, basal ganglia, and cortex, demonstrating that reduced PiT2 expression alone can cause brain calcifications.
PMCID: PMC3824575  PMID: 23934451
SLC20A2; Brain calcification; Phosphate transporter; PiT2
4.  A C-terminal PDZ domain binding sequence is required for striatal distribution of the dopamine transporter 
Nature communications  2013;4:1580.
The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling DAT levels in striatal nerve terminals remain poorly understood. DAT contains a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different DAT knock-in mice with disrupted PDZ-binding motifs (DAT-AAA and DAT+Ala) are characterized by dramatic loss of DAT expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from DAT-AAA mice, we find markedly reduced DAT surface levels and evidence for enhanced constitutive internalization. In DAT-AAA neurons, but not in wild type neurons, surface levels are rescued in part by expression of a dominant-negative dynamin mutation (K44A). Our findings suggest that PDZ domain interactions are critical for synaptic distribution of DAT in vivo and thereby for proper maintenance of dopamine homeostasis.
PMCID: PMC3646413  PMID: 23481388
5.  Loss of Vps54 Function Leads to Vesicle Traffic Impairment, Protein Mis-Sorting and Embryonic Lethality 
The identification of the mutation causing the phenotype of the amyotrophic lateral sclerosis (ALS) model mouse, wobbler, has linked motor neuron degeneration with retrograde vesicle traffic. The wobbler mutation affects protein stability of Vps54, a ubiquitously expressed vesicle-tethering factor and leads to partial loss of Vps54 function. Moreover, the Vps54 null mutation causes embryonic lethality, which is associated with extensive membrane blebbing in the neural tube and is most likely a consequence of impaired vesicle transport. Investigation of cells derived from wobbler and Vps54 null mutant embryos demonstrates impaired retrograde transport of the Cholera-toxin B subunit to the trans-Golgi network and mis-sorting of mannose-6-phosphate receptors and cargo proteins dependent on retrograde vesicle transport. Endocytosis assays demonstrate no difference between wobbler and wild type cells, indicating that the retrograde vesicle traffic to the trans-Golgi network, but not endocytosis, is affected in Vps54 mutant cells. The results obtained on wobbler cells were extended to test the use of cultured skin fibroblasts from human ALS patients to investigate the retrograde vesicle traffic. Analysis of skin fibroblasts of ALS patients will support the investigation of the critical role of the retrograde vesicle transport in ALS pathogenesis and might yield a diagnostic prospect.
PMCID: PMC3709709  PMID: 23708095
Vps54; wobbler; ALS; GARP complex; retrograde vesicle transport
6.  The Proto-Oncogene TWIST1 Is Regulated by MicroRNAs 
PLoS ONE  2013;8(5):e66070.
Upregulation of the proto-oncogene Twist1 is highly correlated with acquired drug resistance and poor prognosis in human cancers. Altered expression of this multifunctional transcription factor is also associated with inherited skeletal malformations. The mammalian Twist1 3′UTRs are highly conserved and contain a number of potential regulatory elements including miRNA target sites. We analyzed the translational regulation of TWIST1 using luciferase reporter assays in a variety of cell lines. Among several miRNAs tested, miR-145a-5p, miR-151-5p and a combination of miR-145a-5p + miR-151-5p and miR-151-5p + miR-337-3p were able to significantly repress Twist1 translation. This phenomena was confirmed with both exogenous and endogenous miRNAs and was dependent on the presence of the predicted target sites in the 3′UTR. Furthermore, the repression was sensitive to LNA-modified miRNA antagonists and resulted in decreased migratory potential of murine embryonic fibroblast cells. Understanding the in vivo mechanisms of this oncogene's regulation might open up a possibility for therapeutic interference by gene specific cancer therapies.
PMCID: PMC3669147  PMID: 23741524
7.  Deregulated Nras Expression in Knock-In Animals Harboring a Gammaretroviral Long Terminal Repeat at the Nras/Csde1 Locus 
PLoS ONE  2013;8(2):e56029.
To investigate mechanisms and phenotypic effects of insertional mutagenesis by gammaretroviruses, we have developed mouse lines containing a single Akv 1-99 long terminal repeat (LTR) and a floxed PGK/Tn5 neomycin cassette at the Nras proto-oncogene at positions previously identified as viral integration sites in Akv 1-99 induced tumors. The insert did not compromise the embryonic development, however, the cassette had an effect on Nras expression in all tissues analyzed. Cre-mediated excision of the PGK/Tn5 neomycin cassette in two of the lines caused upregulation of Nras. Altogether, the knock-in alleles are characterized by modulation of expression of the target gene from more than ten-fold upregulation to three-fold downregulation and exemplify various mechanisms of deregulation by insertional mutagenesis. LTR knock-in mice may serve as a tool to investigate mechanisms of retroviral insertional mutagenesis and as a way of constitutive or induced modulation of expression of a target gene.
PMCID: PMC3572152  PMID: 23418499
8.  A BAC transgenic Hes1-EGFP reporter reveals novel expression domains in mouse embryos 
Gene expression patterns : GEP  2011;11(7):415-426.
Expression of the basic helix-loop-helix factor Hairy and Enhancer of Split-1 (Hes1) is required for normal development of a number of tissues during embryonic development. Depending on context, Hes1 may act as a Notch signalling effector which promotes the undifferentiated and proliferative state of progenitor cells, but increasing evidence also points to Notch independent regulation of Hes1 expression. Here we use high resolution confocal scanning of EGFP in a novel BAC transgenic mouse reporter line, Tg(Hes1-EGFP)1Hri, to analyse Hes1 expression from embryonic day 7.0 (e7.0). Our data recapitulates some previous observations on Hes1 expression and suggests new, hitherto unrecognised expression domains including expression in the definitive endoderm at early somite stages before gut tube closure and thus preceding organogenesis. This mouse line will be a valuable tool for studies addressing the role of Hes1 in a number of different research areas including organ specification, development and regeneration.
PMCID: PMC3163761  PMID: 21745596
9.  Nras Overexpression Results in Granulocytosis, T-Cell Expansion and Early Lethality in Mice 
PLoS ONE  2012;7(8):e42216.
NRAS is a proto-oncogene involved in numerous myeloid malignancies. Here, we report on a mouse line bearing a single retroviral long terminal repeat inserted into Nras. This genetic modification resulted in an increased level of wild type Nras mRNA giving the possibility of studying the function and activation of wild type NRAS. Flow cytometry was used to show a variable but significant increase of immature myeloid cells in spleen and thymus, and of T-cells in the spleen. At an age of one week, homozygous mice began to retard compared to their wild type and heterozygous littermates. Two weeks after birth, animals started to progressively lose weight and die before weaning. Heterozygous mice showed a moderate increase of T-cells and granulocytes but survived to adulthood and were fertile. In homozygous and heterozygous mice Gfi1 and Gcsf mRNA levels were upregulated, possibly explaining the increment in immature myeloid cells detected in these mice. The short latency period indicates that Nras overexpression alone is sufficient to cause dose-dependent granulocytosis and T-cell expansion.
PMCID: PMC3410918  PMID: 22876308
10.  Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice 
Cell Stress & Chaperones  2010;15(6):851-863.
The mitochondrial Hsp60 chaperonin plays an important role in sustaining cellular viability. Its dysfunction is related to inherited forms of the human diseases spastic paraplegia and hypomyelinating leukodystrophy. However, it is unknown whether the requirement for Hsp60 is neuron specific or whether a complete loss of the protein will impair mammalian development and postnatal survival. In this study, we describe the generation and characterization of a mutant mouse line bearing an inactivating gene-trap insertion in the Hspd1 gene encoding Hsp60. We found that heterozygous mice were born at the expected ratio compared to wild-type mice and displayed no obvious phenotype deficits. Using quantitative reverse transcription PCR, we found significantly decreased levels of the Hspd1 transcript in all of the tissues examined, demonstrating that the inactivation of the Hspd1 gene is efficient. By Western blot analysis, we found that the amount of Hsp60 protein, compared to either cytosolic tubulin or mitochondrial voltage-dependent anion-selective channel protein 1/porin, was decreased as well. The expression of the nearby Hspe1 gene, which encodes the Hsp10 co-chaperonin, was concomitantly down regulated in the liver, and the protein levels in all tissues except the brain were reduced. Homozygous Hspd1 mutant embryos, however, died shortly after implantation (day 6.5 to 7.5 of gestation, Theiler stages 9–10). Our results demonstrate that Hspd1 is an essential gene for early embryonic development in mice, while reducing the amount of Hsp60 by inactivation of one allele of the gene is compatible with survival to term as well as postnatal life.
PMCID: PMC3024079  PMID: 20393889
Chaperonin 60; Chaperonin 10; Embryonic development; Gene knockout techniques; Insertional mutagenesis, OmniBank®
11.  Antisense Transcription in Gammaretroviruses as a Mechanism of Insertional Activation of Host Genes▿  
Journal of Virology  2010;84(8):3780-3788.
Transcription of retroviruses is initiated at the U3-R region boundary in the integrated provirus and continues unidirectionally to produce genomic and mRNA products of positive polarity. Several studies have recently demonstrated the existence of naturally occurring protein-encoding transcripts of negative polarity in complex retroviruses. We report here on the identification of transcripts of negative polarity in simple murine leukemia virus (MLV). In T-cell and B-cell lymphomas induced by SL3-3 and Akv MLV, antisense transcripts initiated in the U3 region of the proviral 5′ long terminal repeat (LTR) and continued into the cellular proto-oncogenes Jdp2 and Bach2 to create chimeric transcripts consisting of viral and host sequence. The phenomenon was validated in vivo using a knock-in mouse model homozygous for a single LTR at a position known to activate Nras in B-cell lymphomas. A 5′ rapid amplification of cDNA ends (RACE) analysis indicated a broad spectrum of initiation sites within the U3 region of the 5′ LTR. Our data show for the first time transcriptional activity of negative polarity initiating in the U3 region of simple retroviruses and suggest a novel mechanism of insertional activation of host genes. Elucidation of the nature and potential regulatory role of 5′ LTR antisense transcription will be relevant to the design of therapeutic vectors and may contribute to the increasing recognition of pervasive eukaryotic transcription.
PMCID: PMC2849499  PMID: 20130045

Results 1-11 (11)