PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (91)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  What’s bad in cancer is good in the embryo: Importance of EMT in neural crest development 
Although the epithelial to mesenchymal transition (EMT) is famous for its role in cancer metastasis, it also is a normal developmental event in which epithelial cells are converted into migratory mesenchymal cells. A prime example of EMT during development occurs when neural crest (NC) cells emigrate from the neural tube thus providing an excellent model to study the principles of EMT in a nonmalignant environment. NC cells start life as neuroepithelial cells intermixed with precursors of the central nervous system. After EMT, they delaminate and begin migrating, often to distant sites in the embryo. While proliferating and maintaining multipotency and cell survival the transitioning neural crest cells lose apicobasal polarity and the basement membrane is broken down. This review discusses how these events are coordinated and regulated, by series of events involving signaling factors, gene regulatory interactions, as well as epigenetic and post-transcriptional modifications. Even though the series of events involved in NC EMT are well known, the sequence in which these steps take place remains a subject of debate, raising the intriguing possibility that, rather than being a single event, neural crest EMT may involve multiple parallel mechanisms.
doi:10.1016/j.semcdb.2012.03.010
PMCID: PMC3345076  PMID: 22430756
neural crest; EMT; apicobasal polarity; dorsal neural tube; Snail
2.  Live imaging of endogenous Collapsin response mediator protein-1 expression at subcellular resolution during zebrafish nervous system development 
Gene expression patterns : GEP  2011;11(7):395-400.
Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are functionally important during vertebrate development. We have generated a zebrafish genetrap line that produces fluorescently tagged Crmp1 protein, which can be dynamically tracked in living fish at subcellular resolution. The results show that Crmp1 is expressed in numerous sites in the developing nervous system. Early expression is apparent in the forebrain, epiphysis, optic tectum and the developing spinal cord. In the larval brain, Crmp1 is expressed in several distinct brain regions, such as the telencephalon, habenula and cerebellum. In addition, it is expressed in the spinal cord in a manner that persists in the larva. The results suggest that this Crmp1 protein trap line offers a powerful tool to track selected neuronal populations at high resolution.
doi:10.1016/j.gep.2011.05.002
PMCID: PMC3163798  PMID: 21628002
Crmp1; zebrafish; nervous system; development
3.  Ancestral network module regulating prdm1 expression in the lamprey neural plate border 
Developmental Dynamics  2011;240(10):2265-2271.
prdm1 is an important transcriptional regulator that plays diverse roles during development of a wide variety of vertebrate and invertebrate species. prdm1 is required for neural crest specification in zebrafish, but not in mouse embryos. The role of this gene in neural crest formation in other species has not been examined, and its regulation during embryonic development is poorly understood. Here, we investigate the expression pattern, function and the upstream regulatory inputs into prdm1 during lamprey neural crest development. prdm1 is strongly expressed in the lamprey neural plate border, suggesting a conserved ancestral role of this gene in the neural crest formation. We found that lamprey neural plate border expression of prdm1 is activated by Ap-2 and Msx, but is independent of Pax3/7 and Zic.
doi:10.1002/dvdy.22720
PMCID: PMC3277493  PMID: 21932309
4.  The ulnar-mammary syndrome gene, Tbx3, is a direct target of the retinoic acid signaling pathway, which regulates its expression during mouse limb development 
Molecular Biology of the Cell  2012;23(12):2362-2372.
TBX3 is a direct target of the retinoic acid (RA) signaling pathway. RA activates endogenous TBX3 expression, which is mediated by a RA–receptor complex directly binding and activating the TBX3 promoter, and this regulation is functionally relevant in mouse embryonic limb development.
TBX3, a member of the T-box transcription factor gene family, is a transcriptional repressor that is required for the development of the heart, limbs, and mammary glands. Mutations in TBX3 that result in reduced functional protein lead to ulnar-mammary syndrome, a developmental disorder characterized by limb, mammary gland, tooth, and genital abnormalities. Increased levels of TBX3 have been shown to contribute to the oncogenic process, and TBX3 is overexpressed in several cancers, including breast cancer, liver cancer, and melanoma. Despite its important role in development and postnatal life, little is known about the signaling pathways that modulate TBX3 expression. Here we show, using in vitro and in vivo assays, that retinoic acid (RA) activates endogenous TBX3 expression, which is mediated by an RA–receptor complex directly binding and activating the TBX3 promoter, and we provide evidence that this regulation may be functionally relevant in mouse embryonic limb development. Our data identify TBX3 as a direct target of the RA signaling pathway and extend our understanding of the role and regulation of TBX3 in limb development.
doi:10.1091/mbc.E11-09-0790
PMCID: PMC3374754  PMID: 22535523
5.  Essential roles of zebrafish bmp2a, fgf10, and fgf24 in the specification of the ventral pancreas 
Molecular Biology of the Cell  2012;23(5):945-954.
In vertebrates, pancreas and liver arise from bipotential progenitors located in the endoderm. At early stages, BMP and FGF are known to promote liver fate at the expense of pancreas. At later stages, bmp2a, fgf10, and fgf24 are essential for ventral pancreas specification, whereas they have an opposite effect on liver development.
In vertebrates, pancreas and liver arise from bipotential progenitors located in the embryonic gut endoderm. Bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways have been shown to induce hepatic specification while repressing pancreatic fate. Here we show that BMP and FGF factors also play crucial function, at slightly later stages, in the specification of the ventral pancreas. By analyzing the pancreatic markers pdx1, ptf1a, and hlxb9la in different zebrafish models of BMP loss of function, we demonstrate that the BMP pathway is required between 20 and 24 h postfertilization to specify the ventral pancreatic bud. Knockdown experiments show that bmp2a, expressed in the lateral plate mesoderm at these stages, is essential for ventral pancreas specification. Bmp2a action is not restricted to the pancreatic domain and is also required for the proper expression of hepatic markers. By contrast, through the analysis of fgf10−/−; fgf24−/− embryos, we reveal the specific role of these two FGF ligands in the induction of the ventral pancreas and in the repression of the hepatic fate. These mutants display ventral pancreas agenesis and ectopic masses of hepatocytes. Overall, these data highlight the dynamic role of BMP and FGF in the patterning of the hepatopancreatic region.
doi:10.1091/mbc.E11-08-0664
PMCID: PMC3290651  PMID: 22219376
6.  UHRF1 phosphorylation by cyclin A2/cyclin-dependent kinase 2 is required for zebrafish embryogenesis 
Molecular Biology of the Cell  2012;23(1):59-70.
Although UHRF1 is essential for many epigenetic marks, the mechanism that regulates UHRF1 is not understood. This study shows that a key component of the cell cycle machinery—cyclin-dependent kinase 2/cyclin A2—phosphorylates UHRF1 and that this phosphorylation is essential for early zebrafish development.
Ubiquitin-like, containing PHD and RING finger domains 1 (uhrf1) is regulated at the transcriptional level during the cell cycle and in developing zebrafish embryos. We identify phosphorylation as a novel means of regulating UHRF1 and demonstrate that Uhrf1 phosphorylation is required for gastrulation in zebrafish. Human UHRF1 contains a conserved cyclin-dependent kinase 2 (CDK2) phosphorylation site at Ser-661 that is phosphorylated in vitro by CDK2 partnered with cyclin A2 (CCNA2), but not cyclin E. An antibody specific for phospho-Ser-661 recognizes UHRF1 in both mammalian cancer cells and in nontransformed zebrafish cells, but not in zebrafish bearing a mutation in ccna2. Depleting Uhrf1 from zebrafish embryos by morpholino injection causes arrest before gastrulation and early embryonic death. This phenotype is rescued by wild-type UHRF1, but not by UHRF1 in which the phospho-acceptor site is mutated, demonstrating that UHRF1 phosphorylation is essential for embryogenesis. UHRF1 was detected in the nucleus and cytoplasm, whereas nonphosphorylatable UHRF1 is unable to localize to the cytoplasm, suggesting the importance of localization in UHRF1 function. Together, these data point to an essential role for UHRF1 phosphorylation by CDK/CCNA2 during early vertebrate development.
doi:10.1091/mbc.E11-06-0487
PMCID: PMC3248904  PMID: 22072796
7.  MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix 
Molecular Biology of the Cell  2011;22(21):3955-3961.
Human mesenchymal stem cells are adipoosteogenic progenitors that can differentiate into osteoblasts or adipocytes. A balance between osteogenesis and adipogenesis must be maintained in the growth of connective dynamic tissue. In our study, miR-637 was found to function as the mediator for maintaining the balance of the microenvironment and regulating differentiation.
Bone development is dynamically regulated by homeostasis, in which a balance between adipocytes and osteoblasts is maintained. Disruption of this differentiation balance leads to various bone-related metabolic diseases, including osteoporosis. In the present study, a primate-specific microRNA (miR-637) was found to be involved in the differentiation of human mesenchymal stem cells (hMSCs). Our preliminary data indicated that miR-637 suppressed the growth of hMSCs and induced S-phase arrest. Expression of miR-637 was increased during adipocyte differentiation (AD), whereas it was decreased during osteoblast differentiation (OS), which suggests miR-637 could act as a mediator of adipoosteogenic differentiation. Osterix (Osx), a significant transcription factor of osteoblasts, was shown to be a direct target of miR-637, which significantly enhanced AD and suppressed OS in hMSCs through direct suppression of Osx expression. Furthermore, miR-637 also significantly enhanced de novo adipogenesis in nude mice. In conclusion, our data indicated that the expression of miR-637 was indispensable for maintaining the balance of adipocytes and osteoblasts. Disruption of miR-637 expression patterns leads to irreversible damage to the balance of differentiation in bone marrow.
doi:10.1091/mbc.E11-04-0356
PMCID: PMC3204058  PMID: 21880893
8.  Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus 
Molecular Biology of the Cell  2011;22(18):3355-3365.
A nonmuscle caldesmon (CaD) is highly expressed in premigratory and migrating Xenopus cranial neural crest cells. A loss-of-function approach shows that CaD is critical for neural crest migration. The results further suggest that CaD influences cell morphology and motility by modulating actin dynamics in neural crest cells.
Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca2+-calmodulin–binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration.
doi:10.1091/mbc.E11-02-0165
PMCID: PMC3172261  PMID: 21795398
9.  The period of the somite segmentation clock is sensitive to Notch activity 
Molecular Biology of the Cell  2011;22(18):3541-3549.
We consider the vertebrate somite segmentation clock as an example of a rhythmic phenomenon that occurs in development. Using mouse genetics and mathematical analyses, we found that the period of the clock in each presomitic cell is sensitive to Notch activity. It may be a system for each cell to adapt to its local environment.
The number of vertebrae is defined strictly for a given species and depends on the number of somites, which are the earliest metameric structures that form in development. Somites are formed by sequential segmentation. The periodicity of somite segmentation is orchestrated by the synchronous oscillation of gene expression in the presomitic mesoderm (PSM), termed the “somite segmentation clock,” in which Notch signaling plays a crucial role. Here we show that the clock period is sensitive to Notch activity, which is fine-tuned by its feedback regulator, Notch-regulated ankyrin repeat protein (Nrarp), and that Nrarp is essential for forming the proper number and morphology of axial skeleton components. Null-mutant mice for Nrarp have fewer vertebrae and have defective morphologies. Notch activity is enhanced in the PSM of the Nrarp−/– embryo, where the ∼2-h segmentation period is extended by 5 min, thereby forming fewer somites and their resultant vertebrae. Reduced Notch activity partially rescues the Nrarp−/– phenotype in the number of somites, but not in morphology. Therefore we propose that the period of the somite segmentation clock is sensitive to Notch activity and that Nrarp plays essential roles in the morphology of vertebrae and ribs.
doi:10.1091/mbc.E11-02-0139
PMCID: PMC3172277  PMID: 21795391
10.  Dystroglycan is involved in skin morphogenesis downstream of the Notch signaling pathway 
Molecular Biology of the Cell  2011;22(16):2957-2969.
In Xenopus embryos, the Notch signaling pathway activates dystroglycan transcription in inner cell precursors of the epidermal ectoderm. This activates a cascade of events that promotes the intercalation of the precursors of ciliated cells and the expression of P63.
Dystroglycan (Dg) is a transmembrane protein involved both in the assembly and maintenance of basement membrane structures essential for tissue morphogenesis, and the transmission of signals across the plasma membrane. We used a morpholino knockdown approach to investigate the function of Dg during Xenopus laevis skin morphogenesis. The loss of Dg disrupts epidermal differentiation by affecting the intercalation of multiciliated cells, deposition of laminin, and organization of fibronectin in the extracellular matrix (ECM). Depletion of Dg also affects cell–cell adhesion, as shown by the reduction of E-cadherin expression at the intercellular contacts, without affecting the distribution of β1 integrins. This was associated with a decrease of cell proliferation, a disruption of multiciliated-cell intercalation, and the down-regulation of the transcription factor P63, a marker of differentiated epidermis. In addition, we demonstrated that inhibition or activation of the Notch pathway prevents and promotes transcription of X-dg. Our study showed for the first time in vivo that Dg, in addition to organizing laminin in the ECM, also acts as a key signaling component in the Notch pathway.
doi:10.1091/mbc.E11-01-0074
PMCID: PMC3154890  PMID: 21680717
11.  Expression of Sympathetic Nervous System Genes in Lamprey Suggests Their Recruitment for Specification of a New Vertebrate Feature 
PLoS ONE  2011;6(10):e26543.
The sea lamprey is a basal, jawless vertebrate that possesses many neural crest derivatives, but lacks jaws and sympathetic ganglia. This raises the possibility that the factors involved in sympathetic neuron differentiation were either a gnathostome innovation or already present in lamprey, but serving different purposes. To distinguish between these possibilities, we isolated lamprey homologues of transcription factors associated with peripheral ganglion formation and examined their deployment in lamprey embryos. We further performed DiI labeling of the neural tube combined with neuronal markers to test if neural crest-derived cells migrate to and differentiate in sites colonized by sympathetic ganglia in jawed vertebrates. Consistent with previous anatomical data in adults, our results in lamprey embryos reveal that neural crest cells fail to migrate ventrally to form sympathetic ganglia, though they do form dorsal root ganglia adjacent to the neural tube. Interestingly, however, paralogs of the battery of transcription factors that mediate sympathetic neuron differentiation (dHand, Ascl1 and Phox2b) are present in the lamprey genome and expressed in various sites in the embryo, but fail to overlap in any ganglionic structures. This raises the intriguing possibility that they may have been recruited during gnathostome evolution to a new function in a neural crest derivative.
doi:10.1371/journal.pone.0026543
PMCID: PMC3203141  PMID: 22046306
12.  Histone Demethylase JmjD2A Regulates Neural Crest Specification 
Developmental cell  2010;19(3):460-468.
SUMMARY
The neural crest is a multipotent stem cell-like population that is induced during gastrulation, but only acquires its characteristic morphology, migratory ability and gene expression profile after neurulation. This raises the intriguing possibility that precursors are actively maintained by epigenetic influences in a stem cell-like state. Accordingly, we report that dynamic histone modifications are critical for proper temporal control of neural crest gene expression in vivo. The histone demethylase, JumonjiD2A (JmjD2A/KDM4A), is expressed in the forming neural folds. Loss of JmjD2A function causes dramatic down-regulation of neural crest specifier genes analyzed by multiplex NanoString and in situ hybridization. Importantly, in vivo chromatin immunoprecipitation reveals direct stage-specific interactions of JmjD2A with regulatory regions of neural crest genes, and associated temporal modifications in methylation states of lysine residues directly affected by JmjD2A activity. Our findings show that chromatin modifications directly control neural crest genes in vertebrate embryos via modulating histone methylation.
doi:10.1016/j.devcel.2010.08.009
PMCID: PMC2939072  PMID: 20833367
13.  An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition 
Molecular Biology of the Cell  2011;22(10):1686-1698.
Epithelial-mesenchymal transition is a form of cellular plasticity that is critical for embryonic development and tumor metastasis. This study shows that a signaling network involving autocrine TGF-β signaling, ZEB transcription factors, and the miR-200 family regulates interconversion between epithelial and mesenchymal states.
 Epithelial-mesenchymal transition (EMT) is a form of cellular plasticity that is critical for embryonic development and tumor metastasis. A double-negative feedback loop involving the miR-200 family and ZEB (zinc finger E-box-binding homeobox) transcription factors has been postulated to control the balance between epithelial and mesenchymal states. Here we demonstrate using the epithelial Madin Darby canine kidney cell line model that, although manipulation of the ZEB/miR-200 balance is able to repeatedly switch cells between epithelial and mesenchymal states, the induction and maintenance of a stable mesenchymal phenotype requires the establishment of autocrine transforming growth factor-β (TGF-β) signaling to drive sustained ZEB expression. Furthermore, we show that prolonged autocrine TGF-β signaling induced reversible DNA methylation of the miR-200 loci with corresponding changes in miR-200 levels. Collectively, these findings demonstrate the existence of an autocrine TGF-β/ZEB/miR-200 signaling network that regulates plasticity between epithelial and mesenchymal states. We find a strong correlation between ZEBs and TGF-β and negative correlations between miR-200 and TGF-β and between miR-200 and ZEBs, in invasive ductal carcinomas, consistent with an autocrine TGF-β/ZEB/miR-200 signaling network being active in breast cancers.
doi:10.1091/mbc.E11-02-0103
PMCID: PMC3093321  PMID: 21411626
14.  Stabilization of Dll1 mRNA by Elavl1/HuR in neuroepithelial cells undergoing mitosis 
Molecular Biology of the Cell  2011;22(8):1227-1239.
Delta/Notch-dependent lateral inhibition becomes enhanced in neuroepithelial cells undergoing mitosis. We report that the RNA-binding protein Elavl1/HuR localizes within the cytoplasm of these cells, interacts with the 3′-untranslated region of Dll1, and stabilizes transcripts containing this sequence, thus favoring Notch signaling.
In the vertebrate neuroepithelium, the decision to differentiate is made by neural precursors soon after mitosis, when they are apically located. This process is controlled by lateral inhibitory signals triggered by the Delta/Notch pathway. During mitosis, the capacity of neural precursors to express the neurogenic genes Dll1 and Notch1 is maximal due to mRNA stabilization, but the mechanism controlling this process remains unknown. Here we show that Elav-like (Elavl1)/HuR becomes enriched in the cytoplasm of neuroepithelial cells undergoing mitosis and that this ribonucleoprotein interacts with the 3′ untranslated region (UTR) of Dll1 mRNA. This interaction is functionally relevant because RNAi against Elavl1 reduces the stability of Dll1–3′UTR-containing transcripts in mitosis-arrested neuroepithelial cells, and Elavl1 null-mutant heterozygous mice show decreased Dll1 expression in the developing brain in vivo. We also show that RNAi against Elavl1 diminishes the capacity of brain precursors to trigger lateral inhibitory signals to their neighbors, an observation consistent with the increase in the rate of neurogenesis which can be detected in vivo in the developing retina of Elavl1 heterozygous mice. We conclude that Elavl1/HuR facilitates the exposure of vertebrate neuronal precursors to apically located Delta/Notch signals.
doi:10.1091/mbc.E10-10-0808
PMCID: PMC3078063  PMID: 21346194
15.  Temporal control of a dendritogenesis-linked gene via REST-dependent regulation of nuclear factor I occupancy 
Molecular Biology of the Cell  2011;22(6):868-879.
How the timing of gene expression is controlled during neuronal development is largely unknown. Here we describe a temporal mechanism of gene regulation in differentiating postmitotic neurons involving delayed promoter site occupancy by nuclear factor I and the control of its initial onset by the trans-repressor REST.
 Developing neurons undergo a series of maturational stages, and the timing of these events is critical for formation of synaptic circuitry. Here we addressed temporal regulation of the Gabra6 gene, which is expressed in a delayed manner during dendritogenesis in maturing cerebellar granule neurons (CGNs). Developmental up-regulation of Gabra6 transcription required a binding site for nuclear factor I (NFI) proteins. The amounts and DNA binding activities of NFI proteins were similar in immature and mature CGNs; however, NFI occupancy of the Gabra6 promoter in native chromatin was temporally delayed in parallel with Gabra6 gene expression, both in vivo and in culture. The trans-repressor RE1 silencing transcription factor (REST) occupied the Gabra6 proximal promoter in CGN progenitors and early postmitotic CGNs, and its departure mirrored the initial onset of NFI binding as CGNs differentiated. Furthermore constitutive REST expression blocked both Gabra6 expression and NFI occupancy in mature CGNs, whereas REST knockdown in immature CGNs accelerated the initiation of both events. These studies identify a novel mechanism for controlling the timing of dendritogenesis-associated gene expression in maturing neurons through delayed binding of NFI proteins to chromatin. They also establish a temporal function for REST in preventing premature promoter occupancy by NFI proteins in early-stage postmitotic neurons.
doi:10.1091/mbc.E10-10-0817
PMCID: PMC3057710  PMID: 21270437
16.  Role of Pax3 acetylation in the regulation of Hes1 and Neurog2 
Molecular Biology of the Cell  2011;22(4):503-512.
Here we address how Pax3 regulates stem cell maintenance and neurogenesis during caudal neural tube development. Pax3 acetylation at lysine residues K437 and K475 results in down-regulation of Hes1 and up-regulation of Neurog2 expression.
Pax3 plays a role in regulating Hes1 and Neurog2 activity and thereby stem cell maintenance and neurogenesis. A mechanism for Pax3 regulation of these two opposing events, during caudal neural tube development, is examined in this study. Pax3 acetylation on C-terminal lysine residues K437 and K475 may be critical for proper regulation of Hes1 and Neurog2. Removal of these lysine residues increased Hes1 but decreased Neurog2 promoter activity. SIRT1 deacetylase may be a key component in regulating Pax3 acetylation. Chromatin immunoprecipitation assays showed that SIRT1 is associated with Hes1 and Neurog2 promoters during murine embryonic caudal neural tube development at E9.5, but not at E12.5. Overexpression of SIRT1 decreased Pax3 acetylation, Neurog2 and Brn3a positive staining. Conversely, siRNA-mediated silencing of SIRT1 increased these factors. These studies suggest that Pax3 acetylation results in decreased Hes1 and increased Neurog2 activity, thereby promoting sensory neuron differentiation.
doi:10.1091/mbc.E10-06-0541
PMCID: PMC3038648  PMID: 21169561
17.  The Odontode Explosion: The origin of tooth-like structures in vertebrates 
We integrate recent data to shed new light on the thorny controversy of how teeth arose in evolution. Essentially we show (a) how teeth can form equally from any epithelium, be it endoderm, ectoderm or a combination of the two and (b) that the gene expression programs of oral vs. pharyngeal teeth are remarkably similar. Classic theories suggest that (i) skin denticles evolved first and odontode-inductive surface ectoderm merged inside the oral cavity to form teeth (the ‘outside-in’ hypothesis) or that (ii) patterned odontodes evolved first from endoderm deep inside the pharyngeal cavity (the ‘inside-out’ hypothesis). We propose a new perspective that views odontodes as structures sharing a deep molecular homology, united by sets of co-expressed genes defining a competent thickened epithelium and a collaborative neural crest derived ectomesenchyme. Simply put, odontodes develop ‘inside and out,’ wherever and whenever these co-expressed gene sets signal to one another. Our perspective complements the classic theories and highlights an agenda for specific experimental manipulations in model and non-model organisms.
doi:10.1002/bies.200900151
PMCID: PMC3034446  PMID: 20730948
odontode; dentition; neural crest; taste bud; gene network
18.  ZFP36L1 Negatively Regulates Erythroid Differentiation of CD34+ Hematopoietic Stem Cells by Interfering with the Stat5b Pathway 
Molecular Biology of the Cell  2010;21(19):3340-3351.
ZFP36L1 negatively regulates erythroid differentiation of human hematopoietic progenitors by directly binding the 3′ UTR of Stat5b mRNA, thereby triggering its degradation. This study shows that posttranscriptional regulation is involved in the control of hematopoietic differentiation.
ZFP36L1 is a member of a family of CCCH tandem zinc finger proteins (TTP family) able to bind to AU-rich elements in the 3′-untranslated region of mRNAs, thereby triggering their degradation. The present study suggests that such mechanism is used during hematopoiesis to regulate differentiation by posttranscriptionally modulating the expression of specific target genes. In particular, it demonstrates that ZFP36L1 negatively regulates erythroid differentiation by directly binding the 3′ untranslated region of Stat5b encoding mRNA. Stat5b down-regulation obtained by ZFP36L1 overexpression results, in human hematopoietic progenitors, in a drastic decrease of erythroid colonies formation. These observations have been confirmed by silencing experiments targeting Stat5b and by treating hematopoietic stem/progenitor cells with drugs able to induce ZFP36L1 expression. Moreover, this study shows that different members of ZFP36L1 family act redundantly, because cooverexpression of ZFP36L1 and family member ZFP36 determines a cumulative effect on Stat5b down-regulation. This work describes a mechanism underlying ZFP36L1 capability to regulate hematopoietic differentiation and suggests a new target for the therapy of hematopoietic diseases involving Stat5b/JAK2 pathway, such as chronic myeloproliferative disorders.
doi:10.1091/mbc.E10-01-0040
PMCID: PMC2947470  PMID: 20702587
19.  Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development 
Developmental biology  2009;336(2):257-265.
Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down-regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest remain in the periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that phenocopies lens ablation. Furthermore, Sema3A inhibits periocular neural crest migration in vitro. Taken together, our data reveal a novel and essential role of Sema3A/Npn-1 signaling in coordinating periocular neural crest migration that is vital for proper ocular development.
doi:10.1016/j.ydbio.2009.10.008
PMCID: PMC2800376  PMID: 19833121
semaphorin3A; neuropilin-1; neural crest; cornea; lens
20.  Early Acquisition of Neural Crest Competence During hESCs Neuralization 
PLoS ONE  2010;5(11):e13890.
Background
Neural crest stem cells (NCSCs) are a transient multipotent embryonic cell population that represents a defining characteristic of vertebrates. The neural crest (NC) gives rise to many derivatives including the neurons and glia of the sensory and autonomic ganglia of the peripheral nervous system, enteric neurons and glia, melanocytes, and the cartilaginous, bony and connective tissue of the craniofacial skeleton, cephalic neuroendocrine organs, and some heart vessels.
Methodology/Principal Findings
We present evidence that neural crest (NC) competence can be acquired very early when human embryonic stem cells (hESCs) are selectively neuralized towards dorsal neuroepithelium in the absence of feeder cells in fully defined conditions. When hESC-derived neurospheres are plated on fibronectin, some cells emigrate onto the substrate. These early migratory Neural Crest Stem Cells (emNCSCs) uniformly upregulate Sox10 and vimentin, downregulate N-cadherin, and remodel F-actin, consistent with a transition from neuroepithelium to a mesenchymal NC cell. Over 13% of emNCSCs upregulate CD73, a marker of mesenchymal lineage characteristic of cephalic NC and connexin 43, found on early migratory NC cells. We demonstrated that emNCSCs give rise in vitro to all NC lineages, are multipotent on clonal level, and appropriately respond to developmental factors. We suggest that human emNCSC resemble cephalic NC described in model organisms. Ex vivo emNCSCs can differentiate into neurons in Ret.k- mouse embryonic gut tissue cultures and transplanted emNCSCs incorporate into NC-derived structures but not CNS tissues in chick embryos.
Conclusions/Significance
These findings will provide a framework for further studying early human NC development including the epithelial to mesenchymal transition during NC delamination.
doi:10.1371/journal.pone.0013890
PMCID: PMC2976694  PMID: 21085480
21.  Bimodal, Reciprocal Regulation of Fibroblast Growth Factor Receptor 1 Promoter Activity by BTEB1/KLF9 during Myogenesis 
Molecular Biology of the Cell  2010;21(15):2780-2787.
Expression of FGFR1 controls both myoblast proliferation and differentiation. The Krüppel-like transcription factor BTEB1 demonstrates bimodal, reciprocal activity by activating the FGFR1 promoter in proliferating myoblasts and repressing the same promoter via the same DNA-binding site in differentiated myotubes.
Expression of the gene encoding fibroblast growth factor receptor 1 (FGFR1) and subsequent FGFR1-mediated cell signaling controls numerous developmental and disease-related processes. The transcriptional regulation of the FGFR1 gene is central to these developmental events and serves as a molecular model for understanding transcriptional control of growth factor receptor genes. The FGFR1 promoter is activated in proliferating myoblasts via several Sp1-like binding elements. These elements display varying levels of activation potential, suggesting that unique protein-DNA complexes coordinate FGFR1 gene expression via each of these sites. The Krüppel-like factor, BTEB1/KLF9, was expressed in both proliferating myoblasts and differentiated myotubes in vitro. The BTEB1 protein was nuclear-localized in both cell types. BTEB1 activated the FGFR1 promoter via interaction with the Sp1-like binding site located at −59 bp within the FGFR1 promoter. FGFR1 gene expression is down-regulated during myogenic differentiation, and FGFR1 promoter activity is correspondingly reduced. This reduction in FGFR1 promoter activity was attributable to BTEB1 interaction with the same Sp1-like binding site located at −59 bp in the FGFR1 promoter. Therefore, BTEB1 is capable of functioning as a transcriptional activator and repressor of the same promoter via the same DNA-binding element and demonstrates a novel, bimodal role of BTEB1 during myogenesis.
doi:10.1091/mbc.E10-04-0290
PMCID: PMC2912362  PMID: 20554758
22.  Brain-derived Neurotrophic Factor Regulates Satellite Cell Differentiation and Skeltal Muscle Regeneration 
Molecular Biology of the Cell  2010;21(13):2182-2190.
In this study, muscle-specific BDNF knockout animals were generated and compared with BDNF−/− knockouts. Our findings show that muscle-derived BDNF plays an important role in 1) regulating satellite cell proliferation and differentiation and 2) early regeneration after muscle injury.
In adult skeletal muscle, brain-derived neurotrophic factor (BDNF) is expressed in myogenic progenitors known as satellite cells. To functionally address the role of BDNF in muscle satellite cells and regeneration in vivo, we generated a mouse in which BDNF is specifically depleted from skeletal muscle cells. For comparative purposes, and to determine the specific role of muscle-derived BDNF, we also examined muscles of the complete BDNF−/− mouse. In both models, expression of the satellite cell marker Pax7 was significantly decreased. Furthermore, proliferation and differentiation of primary myoblasts was abnormal, exhibiting delayed induction of several markers of differentiation as well as decreased myotube size. Treatment with exogenous BDNF protein was sufficient to rescue normal gene expression and myotube size. Because satellite cells are responsible for postnatal growth and repair of skeletal muscle, we next examined whether regenerative capacity was compromised. After injury, BDNF-depleted muscle showed delayed expression of several molecular markers of regeneration, as well as delayed appearance of newly regenerated fibers. Recovery of wild-type BDNF levels was sufficient to restore normal regeneration. Together, these findings suggest that BDNF plays an important role in regulating satellite cell function and regeneration in vivo, particularly during early stages.
doi:10.1091/mbc.E10-02-0154
PMCID: PMC2893983  PMID: 20427568
23.  Molecular and tissue interactions governing induction of cranial ectodermal placodes 
Developmental biology  2009;332(2):189-195.
Whereas neural crest cells are the source of the peripheral nervous system in the trunk of vertebrates, the “ectodermal placodes,” together with neural crest, form the peripheral nervous system of the head. Cranial ectodermal placodes are thickenings in the ectoderm that subsequently ingress or invaginate to make important contributions to cranial ganglia, including epibranchial and trigeminal ganglia, and sensory structures, the ear, nose, lens, and adenohypophysis. Recent studies have uncovered a number of molecular signals mediating induction and differentiation of placodal cells. Here, we described recent advances in understanding the tissue interactions and signals underlying induction and neurogenesis of placodes, with emphasis on the trigeminal and epibranchial. Important roles of Fibroblast Growth Factors, Platelet Derived Growth Factors, Sonic Hedgehog, TGFβ superfamily members, and Wnts are discussed.
doi:10.1016/j.ydbio.2009.05.572
PMCID: PMC2747488  PMID: 19500565
placode induction; epibranchial; trigeminal; Shh; Wnt; TGF beta; platelet derived growth factor
24.  Mitf Induction by RANKL Is Critical for Osteoclastogenesis 
Molecular Biology of the Cell  2010;21(10):1763-1771.
This study provides the first evidence that RANKL-induced Mitf is critical for osteoclastogenesis and Mitf is not completely redundant with Tfe3.
Microphthalmia-associated transcription factor (Mitf) regulates the development and function of several cell lineages, including osteoclasts. In this report, we identified a novel mechanism by which RANKL regulates osteoclastogenesis via induction of Mitf isoform E (Mitf-E). Both Mitf-A and Mitf-E are abundantly present in osteoclasts. Unlike Mitf-A, which is ubiquitously expressed and is present in similar amounts in macrophages and osteoclasts, Mitf-E is almost nondetectable in macrophages, but its expression is significantly up-regulated during osteoclastogenesis. In addition to their different expression profiles, the two isoforms are drastically different in their abilities to support osteoclastogenesis, despite sharing all known functional domains. Unlike Mitf-A, small amounts of Mitf-E are present in nuclear lysates unless chromatin is digested/sheared during the extraction. Based on these data, we propose a model in which Mitf-E is induced during osteoclastogenesis and is closely associated with chromatin to facilitate its interaction with target promoters; therefore, Mitf-E has a stronger osteoclastogenic activity. Mitf-A is a weaker osteoclastogenic factor, but activated Mitf-A alone is not sufficient to fully support osteoclastogenesis. Therefore, this receptor activator for nuclear factor-κB ligand (RANKL)-induced Mitf phenomenon seems to play an important role during osteoclastogenesis. Although the current theory indicates that Mitf and its binding partner Tfe3 are completely redundant in osteoclasts, using RNA interference, we demonstrated that Mitf has a distinct role from Tfe3. This study provides the first evidence that RANKL-induced Mitf is critical for osteoclastogenesis and Mitf is not completely redundant with Tfe3.
doi:10.1091/mbc.E09-07-0584
PMCID: PMC2869381  PMID: 20357005
25.  Pax2 and Pea3 synergize to activate a novel regulatory enhancer for spalt4 in the developing ear 
Developmental biology  2009;340(2):222-231.
The transcription factor spalt4 is a key early-response gene in otic placode induction. Here, we characterize the cis-regulatory regions of spalt4 responsible for activation of its expression in the developing otic placode and report the isolation of a novel core enhancer. Identification and mutational analysis of putative transcription factor binding sites reveal that Pea3, a downstream effector of FGF signaling, and Pax2 directly activate spalt4 during ear development. Morpholino-mediated knock-down of each factor reduces or eliminates reporter expression. In contrast, combined over-expression of Pea3 and Pax2 drives ectopic reporter expression, suggesting that they function synergistically. These studies expand the gene regulatory network underlying early otic development by identifying direct inputs that mediate spalt4 expression.
doi:10.1016/j.ydbio.2009.11.004
PMCID: PMC2892740  PMID: 19913005
chick; Sall4; otic induction; inner ear; FGF8

Results 1-25 (91)