PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A BAC transgenic Hes1-EGFP reporter reveals novel expression domains in mouse embryos 
Gene expression patterns : GEP  2011;11(7):415-426.
Expression of the basic helix-loop-helix factor Hairy and Enhancer of Split-1 (Hes1) is required for normal development of a number of tissues during embryonic development. Depending on context, Hes1 may act as a Notch signalling effector which promotes the undifferentiated and proliferative state of progenitor cells, but increasing evidence also points to Notch independent regulation of Hes1 expression. Here we use high resolution confocal scanning of EGFP in a novel BAC transgenic mouse reporter line, Tg(Hes1-EGFP)1Hri, to analyse Hes1 expression from embryonic day 7.0 (e7.0). Our data recapitulates some previous observations on Hes1 expression and suggests new, hitherto unrecognised expression domains including expression in the definitive endoderm at early somite stages before gut tube closure and thus preceding organogenesis. This mouse line will be a valuable tool for studies addressing the role of Hes1 in a number of different research areas including organ specification, development and regeneration.
doi:10.1016/j.gep.2011.06.004
PMCID: PMC3163761  PMID: 21745596
2.  Mesenchymal Bone Morphogenetic Protein Signaling Is Required for Normal Pancreas Development 
Diabetes  2010;59(8):1948-1956.
OBJECTIVE
Pancreas organogenesis is orchestrated by interactions between the epithelium and the mesenchyme, but these interactions are not completely understood. Here we investigated a role for bone morphogenetic protein (BMP) signaling within the pancreas mesenchyme and found it to be required for the normal development of the mesenchyme as well as for the pancreatic epithelium.
RESEARCH DESIGN AND METHODS
We analyzed active BMP signaling by immunostaining for phospho-Smad1,5,8 and tested whether pancreas development was affected by BMP inhibition after expression of Noggin and dominant negative BMP receptors in chicken and mouse pancreas.
RESULTS
Endogenous BMP signaling is confined to the mesenchyme in the early pancreas and inhibition of BMP signaling results in severe pancreatic hypoplasia with reduced epithelial branching. Notably, we also observed an excessive endocrine differentiation when mesenchymal BMP signaling is blocked, presumably secondary to defective mesenchyme to epithelium signaling.
CONCLUSIONS
We conclude that BMP signaling plays a previously unsuspected role in the mesenchyme, required for normal development of the mesenchyme as well as for the epithelium.
doi:10.2337/db09-1010
PMCID: PMC2911072  PMID: 20522595
3.  Preservation of proliferating pancreatic progenitor cells by Delta-Notch signaling in the embryonic chicken pancreas 
Background
Genetic studies have shown that formation of pancreatic endocrine cells in mice is dependent on the cell autonomous action of the bHLH transcription factor Neurogenin3 and that the extent and timing of endocrine differentiation is controlled by Notch signaling. To further understand the mechanism by which Notch exerts this function, we have investigated pancreatic endocrine development in chicken embryos.
Results
In situ hybridization showed that expression of Notch signaling components and pro-endocrine bHLH factors is conserved to a large degree between chicken and mouse. Cell autonomous inhibition of Notch signal reception results in significantly increased endocrine differentiation demonstrating that these early progenitors are prevented from differentiating by ongoing Notch signaling. Conversely, activated Notch1 induces Hes5-1 expression and prevents endocrine development. Notably, activated Notch also prevents Ngn3-mediated induction of a number of downstream targets including NeuroD, Hes6-1, and MyT1 suggesting that Notch may act to inhibit both Ngn3 gene expression and protein function. Activated Notch1 could also block endocrine development and gene expression induced by NeuroD. Nevertheless, Ngn3- and NeuroD-induced delamination of endodermal cells was insensitive to activated Notch under these conditions. Finally, we show that Myt1 can partially overcome the repressive effect of activated Notch on endocrine gene expression.
Conclusion
We conclude that pancreatic endocrine development in the chicken relies on a conserved bHLH cascade under inhibitory control of Notch signaling. This lays the ground for further studies that take advantage of the ease at which chicken embryos can be manipulated.
Our results also demonstrate that Notch can repress Ngn3 and NeuroD protein function and stimulate progenitor proliferation. To determine whether Notch in fact does act in Ngn3-expressing cells in vivo will require further studies relying on conditional mutagenesis.
Lastly, our results demonstrate that expression of differentiation markers can be uncoupled from the process of delamination of differentiating cells from the epithelium.
doi:10.1186/1471-213X-7-63
PMCID: PMC1906762  PMID: 17555568

Results 1-3 (3)