Search tips
Search criteria

Results 1-25 (523)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  The Presence and Role of Iron in Mild Traumatic Brain Injury: An Imaging Perspective 
Journal of Neurotrauma  2014;31(4):301-307.
Mild traumatic brain injury (mTBI), although often presenting without the gross structural abnormalities seen in more severe forms of brain trauma, can nonetheless result in lingering cognitive and behavioral problems along with subtle alterations in brain structure and function. Repeated injuries are associated with brain atrophy and dementia in the form of chronic traumatic encephalopathy (CTE). The mechanisms underlying these dysfunctions are poorly understood. There is a growing body of evidence that brain iron is abnormal after TBI, and brain iron has also been implicated in a host of neurodegenerative disorders. The purpose of this article is to review evidence about the function of iron in the pathophysiology of mTBI and the role that advanced imaging modalities can play in further elucidating said function. MRI techniques sensitive to field inhomogeneities provide supporting evidence for both deep gray matter non-heme iron accumulation as well as focal microhemorrhage resulting from mTBI. In addition, there is evidence that iron may contribute to pathology after mTBI through a number of mechanisms, including generation of reactive oxygen species (ROS), exacerbation of oxidative stress from other sources, and encouragement of tau phosphorylation and the formation of neurofibrillary tangles. Finally, recent animal studies suggest that iron may serve as a therapeutic target in mitigating the effects of mTBI. However, research on the presence and role of iron in mTBI and CTE is still relatively sparse, and further work is necessary to elucidate issues such as the sources of increased iron and the chain of secondary injury.
PMCID: PMC3922137  PMID: 24295521
iron; MRI; TBI
2.  Functionally-Detected Cognitive Impairment in High School Football Players without Clinically-Diagnosed Concussion 
Journal of Neurotrauma  2014;31(4):327-338.
Head trauma and concussion in football players have recently received considerable media attention. Postmortem evidence suggests that accrual of damage to the brain may occur with repeated blows to the head, even when the individual blows fail to produce clinical symptoms. There is an urgent need for improved detection and characterization of head trauma to reduce future injury risk and promote development of new therapies. In this study we examined neurological performance and health in the presence of head collision events in high school football players, using longitudinal measures of collision events (the HIT™ System), neurocognitive testing (ImPACT™), and functional magnetic resonance imaging MRI (fMRI). Longitudinal assessment (including baseline) was conducted in 11 young men (ages 15–19 years) participating on the varsity and junior varsity football teams at a single high school. We expected and observed subjects in two previously described categories: (1) no clinically-diagnosed concussion and no changes in neurological behavior, and (2) clinically-diagnosed concussion with changes in neurological behavior. Additionally, we observed players in a previously undiscovered third category, who exhibited no clinically-observed symptoms associated with concussion, but who demonstrated measurable neurocognitive (primarily visual working memory) and neurophysiological (altered activation in the dorsolateral prefrontal cortex [DLPFC]) impairments. This new category was associated with significantly higher numbers of head collision events to the top-front of the head, directly above the DLPFC. The discovery of this new category suggests that more players are suffering neurological injury than are currently being detected using traditional concussion-assessment tools. These individuals are unlikely to undergo clinical evaluation, and thus may continue to participate in football-related activities, even when changes in brain physiology (and potential brain damage) are present, which will increase the risk of future neurological injury.
PMCID: PMC3922228  PMID: 20883154
behavioral assessment; cognitive function; human studies; magnetic resonance imaging; traumatic brain injury
3.  Blockage of the Upregulation of Voltage-Gated Sodium Channel Nav1.3 Improves Outcomes after Experimental Traumatic Brain Injury 
Journal of Neurotrauma  2014;31(4):346-357.
Excessive active voltage-gated sodium channels are responsible for the cellular abnormalities associated with secondary brain injury following traumatic brain injury (TBI). We previously presented evidence that significant upregulation of Nav1.3 expression occurs in the rat cortex at 2 h and 12 h post-TBI and is correlated with TBI severity. In our current study, we tested the hypothesis that blocking upregulation of Nav1.3 expression in vivo in the acute stage post-TBI attenuates the secondary brain injury associated with TBI. We administered either antisense oligodeoxynucleotides (ODN) targeting Nav1.3 or artificial cerebrospinal fluid (aCSF) at 2 h, 4 h, 6 h, and 8 h following TBI. Control sham animals received aCSF administration at the same time points. At 12 h post-TBI, Nav1.3 messenger ribonucleic acid (mRNA) levels in bilateral hippocampi of the aCSF group were significantly elevated, compared with the sham and ODN groups (p<0.01). However, the Nav1.3 mRNA levels in the uninjured contralateral hippocampus of the ODN group were significantly lowered, compared with the sham group (p<0.01). Treatment with antisense ODN significantly decreased the number of degenerating neurons in the ipsilateral hippocampal CA3 and hilar region (p<0.01). A set of left-to-right ratio value analyzed by magnetic resonance imaging T2 image on one day, three days, and seven days post-TBI showed marked edema in the ipsilateral hemisphere of the aCSF group, compared with that of the ODN group (p<0.05). The Morris water maze memory retention test showed that both the aCSF and ODN groups took longer to find a hidden platform, compared with the sham group (p<0.01). However, latency in the aCSF group was significantly higher than in the ODN group (p<0.05). Our in vivo Nav1.3 inhibition studies suggest that therapeutic strategies to block upregulation of Nav1.3 expression in the brain may improve outcomes following TBI.
PMCID: PMC3922240  PMID: 24313291
antisense oligodeoxynucleotides; intracerebroventicular administration; Nav1.3; traumatic brain injury; voltage-gated sodium channels
4.  Hypopituitarism in Pediatric Survivors of Inflicted Traumatic Brain Injury 
Journal of Neurotrauma  2014;31(4):321-326.
Endocrine dysfunction is common after accidental traumatic brain injury (TBI). Prevalence of endocrine dysfunction after inflicted traumatic brain injury (iTBI) is not known. The aim of this study was to examine endocrinopathy in children after moderate-to-severe iTBI. Children with previous iTBI (n=14) were evaluated for growth/endocrine dysfunction, including anthropometric measurements and hormonal evaluation (nocturnal growth hormone [GH], thyrotropin surge, morning and low-dose adrenocorticotropin stimulated cortisol, insulin-like growth factor 1, IGF-binding protein 3, free thyroxine, prolactin [PRL], and serum/urine osmolality). Analysis used Fisher's exact test and Wilcoxon's rank-sum test, as appropriate. Eighty-six percent of subjects had endocrine dysfunction with at least one abnormality, whereas 50% had two or more abnormalities, significantly increased compared to an estimated 2.5% with endocrine abnormality in the general population (p<0.001). Elevated prolactin was common (64%), followed by abnormal thyroid function (33%), short stature (29%), and low GH peak (17%). High prolactin was common in subjects with other endocrine abnormalities. Two were treated with thyroid hormone and 2 may require GH therapy. In conclusion, children with a history of iTBI show high risk for endocrine dysfunction, including elevated PRL and growth abnormalities. This effect of iTBI has not been well described in the literature. Larger, multi-center, prospective studies would provide more data to determine the extent of endocrine dysfunction in iTBI. We recommend that any child with a history of iTBI be followed closely for growth velocity and pubertal changes. If growth velocity is slow, PRL level and a full endocrine evaluation should be performed.
PMCID: PMC3922245  PMID: 24028400
pituitary; prolactin; shaken baby syndrome; short stature; traumatic brain injury
5.  The Effect of Hypothermia on the Expression of TIMP-3 after Traumatic Brain Injury in Rats 
Journal of Neurotrauma  2014;31(4):387-394.
Here we investigate the effect of hypothermia on the expression of apoptosis-regulating protein TIMP-3 after fluid percussion traumatic brain injury (TBI) in rats. We began with 210 adult male Sprague-Dawley rats and randomly assigned them to three groups: TBI with hypothermia treatment (32°C), TBI with normothermia (37°C), and sham-injured controls. TBI was induced by a fluid percussion TBI device. Mild hypothermia (32°C) was achieved by partial immersion in a water bath (0°C) under general anesthesia for 4 h. The rats were killed at 4, 6, 12, 24, 48, and 72 h and 1 week after TBI. The mRNA and protein level of TIMP-3 in both the injured and uninjured hemispheres of the brains from each group were measured using RT-PCR and Western blotting. In the normothermic group, TIMP-3 levels in both the injured and uninjured hemispheres were significantly increased after TBI compared with those of sham-injured animals (p < 0.01). In contrast, post-traumatic hypothermia significantly attenuated this increase. According to the RT-PCR and Western blot analyses, the maximum mRNA levels of TIMP-3 were reduced to 60.60 ± 2.30%, 55.83 ± 1.80%, 66.03 ± 2.10%, and 64.51 ± 1.50%, respectively, of the corresponding values in the normothermic group in the injured and uninjured hemispheres (cortex and hippocampus) of the hypothermia group (p < 0.01), while the respective maximum protein levels of TIMP-3 were reduced to 57.50 ± 1.50, 52.67 ± 2.20, 60.31 ± 2.50 and 54.76 ± 1.40 (p < 0.01). Our data suggest that moderate fluid percussion brain injury significantly upregulates TIMP-3 expression, and that this increase may be suppressed by hypothermia treatment.
PMCID: PMC3922295  PMID: 23256480
hippocampus; mild hypothermia; TIMP-3; traumatic brain injury
6.  Acute Alcohol Intoxication Prolongs Neuroinflammation without Exacerbating Neurobehavioral Dysfunction following Mild Traumatic Brain Injury 
Journal of Neurotrauma  2014;31(4):378-386.
Traumatic brain injury (TBI) represents a leading cause of death and disability among young persons with ∼1.7 million reported cases in the United States annually. Although acute alcohol intoxication (AAI) is frequently present at the time of TBI, conflicting animal and clinical reports have failed to establish whether AAI significantly impacts short-term outcomes after TBI. The objective of this study was to determine whether AAI at the time of TBI aggravates neurobehavioral outcomes and neuroinflammatory sequelae post-TBI. Adult male Sprague-Dawley rats were surgically instrumented with gastric and vascular catheters before a left lateral craniotomy. After recovery, rats received either a primed constant intragastric alcohol infusion (2.5 g/kg+0.3 g/kg/h for 15 h) or isocaloric/isovolumic dextrose infusion followed by a lateral fluid percussion TBI (∼1.4 J, ∼30 ms). TBI induced apnea and a delay in righting reflex. AAI at the time of injury increased the TBI induced delay in righting reflex without altering apnea duration. Neurological and behavioral dysfunction was observed at 6 h and 24 h post-TBI, and this was not exacerbated by AAI. TBI induced a transient upregulation of cortical interleukin (IL)-6 and monocyte chemotactic protein (MCP)-1 mRNA expression at 6 h, which was resolved at 24 h. AAI did not modulate the inflammatory response at 6 h but prevented resolution of inflammation (IL-1, IL-6, tumor necrosis factor-α, and MCP-1 expression) at 24 h post-TBI. AAI at the time of TBI did not delay the recovery of neurological and neurobehavioral function but prevented the resolution of neuroinflammation post-TBI.
PMCID: PMC3922393  PMID: 24050411
alcohol and drug abuse; animal studies; behavior assessments; inflammation
7.  Early Platelet Dysfunction in a Rodent Model of Blunt Traumatic Brain Injury Reflects the Acute Traumatic Coagulopathy Found in Humans 
Journal of Neurotrauma  2014;31(4):404-410.
Acute coagulopathy is a serious complication of traumatic brain injury (TBI) and is of uncertain etiology because of the complex nature of TBI. However, recent work has shown a correlation between mortality and abnormal hemostasis resulting from early platelet dysfunction. The aim of the current study was to develop and characterize a rodent model of TBI that mimics the human coagulopathic condition so that mechanisms of the early acute coagulopathy in TBI can be more readily assessed. Studies utilizing a highly reproducible constrained blunt-force brain injury in rats demonstrate a strong correlation with important postinjury pathological changes that are observed in human TBI patients, namely, diminished platelet responses to agonists, especially adenosine diphosphate (ADP), and subarachnoid bleeding. Additionally, administration of a direct thrombin inhibitor, preinjury, recovers platelet functionality to ADP stimulation, indicating a direct role for excess thrombin production in TBI-induced early platelet dysfunction.
PMCID: PMC3922394  PMID: 24040968
brain injury; coagulopathy; platelets; thromboelastography; trauma
8.  Erythropoietin Improved Cognitive Function and Decreased Hippocampal Caspase Activity in Rat Pups after Traumatic Brain Injury 
Journal of Neurotrauma  2014;31(4):358-369.
Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. Hypothesis: We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). Methods: EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. Results: EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury.
PMCID: PMC3922399  PMID: 23972011
apoptosis; controlled cortical impect; developmental; EPO; memory
9.  Evidence for Impaired Plasticity after Traumatic Brain Injury in the Developing Brain 
Journal of Neurotrauma  2014;31(4):395-403.
The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2–3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks.
PMCID: PMC3922417  PMID: 24050267
brain injury; development; magnetic resonance imaging; plasticity, somatosensory cortex, magnetic resonance imaging
10.  Pharmacotherapy of Traumatic Brain Injury: State of the Science and the Road Forward: Report of the Department of Defense Neurotrauma Pharmacology Workgroup 
Journal of Neurotrauma  2014;31(2):135-158.
Despite substantial investments by government, philanthropic, and commercial sources over the past several decades, traumatic brain injury (TBI) remains an unmet medical need and a major source of disability and mortality in both developed and developing societies. The U.S. Department of Defense neurotrauma research portfolio contains more than 500 research projects funded at more than $700 million and is aimed at developing interventions that mitigate the effects of trauma to the nervous system and lead to improved quality of life outcomes. A key area of this portfolio focuses on the need for effective pharmacological approaches for treating patients with TBI and its associated symptoms. The Neurotrauma Pharmacology Workgroup was established by the U.S. Army Medical Research and Materiel Command (USAMRMC) with the overarching goal of providing a strategic research plan for developing pharmacological treatments that improve clinical outcomes after TBI. To inform this plan, the Workgroup (a) assessed the current state of the science and ongoing research and (b) identified research gaps to inform future development of research priorities for the neurotrauma research portfolio. The Workgroup identified the six most critical research priority areas in the field of pharmacological treatment for persons with TBI. The priority areas represent parallel efforts needed to advance clinical care; each requires independent effort and sufficient investment. These priority areas will help the USAMRMC and other funding agencies strategically guide their research portfolios to ensure the development of effective pharmacological approaches for treating patients with TBI.
PMCID: PMC3900003  PMID: 23968241
animal studies; head trauma; human studies; pharmacology; traumatic brain injury
11.  Neural Activation during Response Inhibition Differentiates Blast from Mechanical Causes of Mild to Moderate Traumatic Brain Injury 
Journal of Neurotrauma  2014;31(2):169-179.
Military personnel involved in Operations Enduring Freedom and Iraqi Freedom (OEF/OIF) commonly experience blast-induced mild to moderate traumatic brain injury (TBI). In this study, we used task-activated functional MRI (fMRI) to determine if blast-related TBI has a differential impact on brain activation in comparison with TBI caused primarily by mechanical forces in civilian settings. Four groups participated: (1) blast-related military TBI (milTBI; n=21); (2) military controls (milCON; n=22); (3) non-blast civilian TBI (civTBI; n=21); and (4) civilian controls (civCON; n=23) with orthopedic injuries. Mild to moderate TBI (MTBI) occurred 1 to 6 years before enrollment. Participants completed the Stop Signal Task (SST), a measure of inhibitory control, while undergoing fMRI. Brain activation was evaluated with 2 (mil, civ)×2 (TBI, CON) analyses of variance, corrected for multiple comparisons. During correct inhibitions, fMRI activation was lower in the TBI than CON subjects in regions commonly associated with inhibitory control and the default mode network. In contrast, inhibitory failures showed significant interaction effects in the bilateral inferior temporal, left superior temporal, caudate, and cerebellar regions. Specifically, the milTBI group demonstrated more activation than the milCON group when failing to inhibit; in contrast, the civTBI group exhibited less activation than the civCON group. Covariance analyses controlling for the effects of education and self-reported psychological symptoms did not alter the brain activation findings. These results indicate that the chronic effects of TBI are associated with abnormal brain activation during successful response inhibition. During failed inhibition, the pattern of activation distinguished military from civilian TBI, suggesting that blast-related TBI has a unique effect on brain function that can be distinguished from TBI resulting from mechanical forces associated with sports or motor vehicle accidents. The implications of these findings for diagnosis and treatment of TBI are discussed.
PMCID: PMC3900006  PMID: 24020449
blast-related TBI; brain activation; fMRI; inhibitory control; mechanical TBI; traumatic brain injury
12.  Current Recommendations for the Diagnosis and Treatment of Concussion in Sport: A Comparison of Three New Guidelines 
Journal of Neurotrauma  2014;31(2):159-168.
Currently, there is considerable debate within the sports medicine community about the role of concussion and the risk of chronic neurological sequelae. This concern has led to significant confusion among primary care providers and athletic trainers about how to best identify those athletes at risk and how to treat those with concussion. During the first quarter of 2013, several new or updated clinical practice guidelines and position statements were published on the diagnosis, treatment, and management of mild traumatic brain injury/concussion in sports. Three of these guidelines were produced by the American Medical Society for Sports Medicine, The American Academy of Neurology, and the Zurich Consensus working group. The goal of each group was to clearly define current best practices for the definition, diagnosis, and acute and post-acute management of sports-related concussion, including specific recommendations for return to play. In this article, we compare the recommendations of each of the three groups, and highlight those topics for which there is consensus regarding the definition of concussion, diagnosis, and acute care of athletes suspected of having a concussion, as well as return-to-play recommendations.
PMCID: PMC3900013  PMID: 23879529
concussion; guidelines; mild traumatic brain injury; post-concussion syndrome; return to play
13.  Investigating the Properties of the Hemodynamic Response Function after Mild Traumatic Brain Injury 
Journal of Neurotrauma  2014;31(2):189-197.
Although several functional magnetic resonance imaging (fMRI) studies have been conducted in human models of mild traumatic brain injury (mTBI), to date no studies have explicitly examined how injury may differentially affect both the positive phase of the hemodynamic response function (HRF) as well as the post-stimulus undershoot (PSU). Animal models suggest that the acute and semi-acute stages of mTBI are associated with significant disruptions in metabolism and to the microvasculature, both of which could impact on the HRF. Therefore, fMRI data were collected on a cohort of 30 semi-acute patients with mTBI (16 males; 27.83±9.97 years old; 13.00±2.18 years of education) and 30 carefully matched healthy controls (HC; 16 males; 27.17±10.08 years old; 13.37±2.31 years of education) during a simple sensory-motor task. Patients reported increased cognitive, somatic, and emotional symptoms relative to controls, although no group differences were detected on traditional neuropsychological examination. There were also no differences between patients with mTBI and controls on fMRI data using standard analytic techniques, although mTBI exhibited a greater volume of activation during the task qualitatively. A significant Group×Time interaction was observed in the right supramarginal gyrus, bilateral primary and secondary visual cortex, and the right parahippocampal gyrus. The interaction was the result of an earlier time-to-peak and positive magnitude shift throughout the estimated HRF in patients with mTBI relative to HC. This difference in HRF shape combined with the greater volume of activated tissue may be indicative of a potential compensatory mechanism to injury. The current study demonstrates that direct examination and modeling of HRF characteristics beyond magnitude may provide additional information about underlying neuropathology that is not available with more standard fMRI analyses.
PMCID: PMC3900017  PMID: 23965000
fMRI; hemodynamic response function; sensorimotor; traumatic brain injury
14.  Persistent Differences in Patterns of Brain Activation after Sports-Related Concussion: A Longitudinal Functional Magnetic Resonance Imaging Study 
Journal of Neurotrauma  2014;31(2):180-188.
Avoiding recurrent injury in sports-related concussion (SRC) requires understanding the neural mechanisms involved during the time of recovery after injury. The decision for return-to-play is one of the most difficult responsibilities facing the physician, and so far this decision has been based primarily on neurological examination, symptom checklists, and neuropsychological (NP) testing. Functional magnetic resonance imaging (fMRI) may be an additional, more objective tool to assess the severity and recovery of function after concussion. The purpose of this study was to define neural correlates of SRC during the 2 months after injury in varsity contact sport athletes who suffered a SRC. All athletes were scanned as they performed an n-back task, for n=1, 2, 3. Subjects were scanned within 72 hours (session one), at 2 weeks (session two), and 2 months (session three) post-injury. Compared with age and sex matched normal controls, concussed subjects demonstrated persistent, significantly increased activation for the 2 minus 1 n-back contrast in bilateral dorsolateral prefrontal cortex (DLPFC) in all three sessions and in the inferior parietal lobe in session one and two (α≤0.01 corrected). Measures of task performance revealed no significant differences between concussed versus control groups at any of the three time points with respect to any of the three n-back tasks. These findings suggest that functional brain activation differences persist at 2 months after injury in concussed athletes, despite the fact that their performance on a standard working memory task is comparable to normal controls and normalization of clinical and NP test results. These results might indicate a delay between neural and behaviorally assessed recovery after SRC.
PMCID: PMC3900041  PMID: 23914845
concussion; DLPFC; fMRI; n-back task; working memory
15.  Influences of Developmental Age on the Resolution of Diffuse Traumatic Intracranial Hemorrhage and Axonal Injury 
Journal of Neurotrauma  2014;31(2):206-214.
This study investigated the age-dependent injury response of diffuse traumatic axonal injury (TAI) and regional subdural and subarachnoid intracranial hemorrhage (ICH) in two pediatric age groups using a porcine head injury model. Fifty-five 5-day-old and 40 four-week-old piglets—which developmentally correspond to infants and toddlers, respectively—underwent either a sham injury or a single rapid non-impact rotational injury in the sagittal plane and were grouped by post-TBI survival time (sham, 3–8 h, one day, 3–4 days, and 5–6 days). Both age groups exhibited similar initial levels of ICH and a significant reduction of ICH over time (p<0.0001). However, ICH took longer to resolve in the five-day-old age group. At 5–6 days post-injury, ICH in the cerebrum had returned to sham levels in the four-week-old piglets, while the five-day-olds still had significantly elevated cerebral ICH (p=0.012). Both ages also exhibited similar resolution of axonal injury with a peak in TAI at one day post-injury (p<0.03) and significantly elevated levels even at 5–6 days after the injury (p<0.008), which suggests a window of vulnerability to a second insult at one day post-injury that may extend for a prolonged period of time. However, five-day-old piglets had significantly more TAI than four-week-olds overall (p=0.016), which presents some evidence for an increased vulnerability to brain injury in this age group. These results provide insight into an optimal window for clinical intervention, the period of increased susceptibility to a second injury, and an age dependency in brain injury tolerance within the pediatric population.
PMCID: PMC3901955  PMID: 23984914
axonal injury; hemorrhage; pediatric traumatic brain injury; swine, time course
16.  Glasgow Coma Scale Motor Score and Pupillary Reaction To Predict Six-Month Mortality in Patients with Traumatic Brain Injury: Comparison of Field and Admission Assessment 
Journal of Neurotrauma  2015;32(2):101-108.
The Glasgow Coma Scale (GCS) and pupillary reactivity are well-known prognostic factors in traumatic brain injury (TBI). The aim of this study was to compare the GCS motor score and pupillary reactivity assessed in the field and at hospital admission and assess their prognostic value for 6-month mortality in patients with moderate or severe TBI. We studied 445 patients with moderate or severe TBI from Austria enrolled to hospital in 2009–2012. The area under the curve (AUC) and Nagelkerke's R2 were used to evaluate the predictive ability of GCS motor score and pupillary reactivity assessed in the field and at admission. Uni- and multi-variable analyses—adjusting for age, other clinical, and computed tomography findings—were performed using combinations of field and admission GCS motor score and pupillary reactivity. Motor scores generally deteriorated from the field to admission, whereas pupillary reactivity was similar. GCS motor score assessed in field (AUC=0.754; R2=0.273) and pupillary assessment at admission (AUC=0.662; R2=0.214) performed best as predictors of 6-month mortality in the univariate analysis. This combination also showed best performance in the adjusted analyses (AUC=0.876; R2=0.508), but the performance of both predictors assessed at admission was not much worse (AUC=0.857; R2=0.460). Field GCS motor score and pupillary reactivity at hospital admission, compared to other combinations of these parameters, possess the best prognostic value to predict 6-month mortality in patients with moderate-to-severe TBI. Given that differences in prognostic performance are only small, both the field and admission values of GCS motor score and pupillary reaction may be reasonable to use in multi-variable prediction models to predict 6-month outcome.
PMCID: PMC4291088  PMID: 25227136
assessment at admission; Glasgow Coma Scale; prehospital assessment; pupillary reactivity; traumatic brain injuries
17.  Methylene Blue Attenuates Traumatic Brain Injury-Associated Neuroinflammation and Acute Depressive-Like Behavior in Mice 
Journal of Neurotrauma  2015;32(2):127-138.
Traumatic brain injury (TBI) is associated with cerebral edema, blood brain barrier breakdown, and neuroinflammation that contribute to the degree of injury severity and functional recovery. Unfortunately, there are no effective proactive treatments for limiting immediate or long-term consequences of TBI. Therefore, the objective of this study was to determine the efficacy of methylene blue (MB), an antioxidant agent, in reducing inflammation and behavioral complications associated with a diffuse brain injury. Here we show that immediate MB infusion (intravenous; 15–30 minutes after TBI) reduced cerebral edema, attenuated microglial activation and reduced neuroinflammation, and improved behavioral recovery after midline fluid percussion injury in mice. Specifically, TBI-associated edema and inflammatory gene expression in the hippocampus were significantly reduced by MB at 1 d post injury. Moreover, MB intervention attenuated TBI-induced inflammatory gene expression (interleukin [IL]-1β, tumor necrosis factor α) in enriched microglia/macrophages 1 d post injury. Cell culture experiments with lipopolysaccharide-activated BV2 microglia confirmed that MB treatment directly reduced IL-1β and increased IL-10 messenger ribonucleic acid in microglia. Last, functional recovery and depressive-like behavior were assessed up to one week after TBI. MB intervention did not prevent TBI-induced reductions in body weight or motor coordination 1–7 d post injury. Nonetheless, MB attenuated the development of acute depressive-like behavior at 7 d post injury. Taken together, immediate intervention with MB was effective in reducing neuroinflammation and improving behavioral recovery after diffuse brain injury. Thus, MB intervention may reduce life-threatening complications of TBI, including edema and neuroinflammation, and protect against the development of neuropsychiatric complications.
PMCID: PMC4291210  PMID: 25070744
cytokines; fluid percussion injury; intervention; microglia; recovery
18.  A Longitudinal Magnetic Resonance Imaging Study of the Apparent Diffusion Coefficient Values in Corpus Callosum during the First Year after Traumatic Brain Injury 
Journal of Neurotrauma  2014;31(1):56-63.
The objective of this study was to explore the evolution of apparent diffusion coefficient (ADC) values in magnetic resonance imaging (MRI) in normal-appearing tissue of the corpus callosum during the 1st year after traumatic brain injury (TBI), and relate findings to outcome. Fifty-seven patients (mean age 34 [range 11–63] years) with moderate to severe TBI were examined with diffusion weighted MRI at three time points (median 7 days, 3 and 12 months), and a sex- and age-matched control group of 47 healthy individuals, were examined once. The corpus callosum was subdivided and the mean ADC values computed blinded in 10 regions of interests without any visible lesions in the ADC map. Outcome measures were Glasgow Outcome Scale Extended (GOSE) and neuropsychological domain scores at 12 months. We found a gradual increase of the mean ADC values during the 12 month follow-up, most evident in the posterior truncus (r=0.19, p<0.001). Compared with the healthy control group, we found higher mean ADC values in posterior truncus both at 3 months (p=0.021) and 12 months (p=0.003) post-injury. Patients with fluid-attenuated inversion recovery (FLAIR) lesions in the corpus callosum in the early MRI, and patients with disability (GOSE score ≤6) showed evidence of increased mean ADC values in the genu and posterior truncus at 12 months. Mean ADC values in posterior parts of the corpus callosum at 3 months predicted the sensory-motor function domain score (p=0.010–0.028). During the 1st year after moderate and severe TBI, we demonstrated a slowly evolving disruption of the microstructure in normal appearing corpus callosum in the ADC map, most evident in the posterior truncus. The mean ADC values were associated with both outcome and ability to perform speeded, complex sensory-motor action.
PMCID: PMC3880061  PMID: 23837731
craniocerebral trauma; GOS; MRI; prospective studies; neuropsychological tests
19.  Acute Biomarkers of Traumatic Brain Injury: Relationship between Plasma Levels of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein 
Journal of Neurotrauma  2014;31(1):19-25.
Biomarkers are important for accurate diagnosis of complex disorders such as traumatic brain injury (TBI). For a complex and multifaceted condition such as TBI, it is likely that a single biomarker will not reflect the full spectrum of the response of brain tissue to injury. Ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) are among of the most widely studied biomarkers for TBI. Because UCH-L1 and GFAP measure distinct molecular events, we hypothesized that analysis of both biomarkers would be superior to analysis of each alone for the diagnosis and prognosis of TBI. Serum levels of UCH-L1 and GFAP were measured in a cohort of 206 patients with TBI enrolled in a multicenter observational study (Transforming Research and Clinical Knowledge in Traumatic Brain Injury [TRACK-TBI]). Levels of the two biomarkers were weakly correlated to each other (r=0.364). Each biomarker in isolation had good sensitivity and sensitivity for discriminating between TBI patients and healthy controls (area under the curve [AUC] 0.87 and 0.91 for UCH-L1 and GFAP, respectively). When biomarkers were combined, superior sensitivity and specificity for diagnosing TBI was obtained (AUC 0.94). Both biomarkers discriminated between TBI patients with intracranial lesions on CT scan and those without such lesions, but GFAP measures were significantly more sensitive and specific (AUC 0.88 vs. 0.71 for UCH-L1). For association with outcome 3 months after injury, neither biomarker had adequate sensitivity and specificity (AUC 0.65–0.74, for GFAP, and 0.59–0.80 for UCH-L1, depending upon Glasgow Outcome Scale Extended [GOS-E] threshold used). Our results support a role for multiple biomarker measurements in TBI research. ( Identifier NCT01565551)
PMCID: PMC3880090  PMID: 23865516
biomarker; common data elements; human studies; TBI
20.  Symptomatology and Functional Outcome in Mild Traumatic Brain Injury: Results from the Prospective TRACK-TBI Study 
Journal of Neurotrauma  2014;31(1):26-33.
Mild Traumatic Brain Injury (mTBI), or concussion, is a major public health concern. There is controversy in the literature regarding the true incidence of postconcussion syndrome (PCS), with the constellation of physical, cognitive, emotional, and sleep symptoms after mTBI. In the current study, we report on the incidence and evolution of PCS symptoms and patient outcomes after mTBI at 3, 6, and 12 months in a large, prospective cohort of mTBI patients. Participants were identified as part of the prospective, multi-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. The study population was mTBI patients (Glasgow Coma Scale score of 13–15) presenting to the emergency department, including patients with a negative head computed tomography discharged to home without admission to hospital; 375 mTBI subjects were included in the analysis. At both 6 and 12 months after mTBI, 82% (n=250 of 305 and n=163 of 199, respectively) of patients reported at least one PCS symptom. Further, 44.5 and 40.3% of patients had significantly reduced Satisfaction With Life scores at 6 and 12 months, respectively. At 3 months after injury, 33% of the mTBI subjects were functionally impaired (Glasgow Outcome Scale-Extended score ≤6); 22.4% of the mTBI subjects available for follow-up were still below full functional status at 1 year after injury. The term “mild” continues to be a misnomer for this patient population and underscores the critical need for evolving classification strategies for TBI for targeted therapy.
PMCID: PMC3880097  PMID: 23952719
clinical trial; health-related quality of life; postconcussion syndrome; outcome; traumatic brain injury
21.  Mitochondrial Polymorphisms Impact Outcomes after Severe Traumatic Brain Injury 
Journal of Neurotrauma  2014;31(1):34-41.
Patient outcomes are variable following severe traumatic brain injury (TBI); however, the biological underpinnings explaining this variability are unclear. Mitochondrial dysfunction after TBI is well documented, particularly in animal studies. The aim of this study was to investigate the role of mitochondrial polymorphisms on mitochondrial function and patient outcomes out to 1 year after a severe TBI in a human adult population. The Human MitoChip V2.0 was used to evaluate mitochondrial variants in an initial set of n=136 subjects. SNPs found to be significantly associated with patient outcomes [Glasgow Outcome Scale (GOS), Neurobehavioral Rating Scale (NRS), Disability Rating Scale (DRS), in-hospital mortality, and hospital length of stay] or neurochemical level (lactate:pyruvate ratio from cerebrospinal fluid) were further evaluated in an expanded sample of n=336 subjects. A10398G was associated with DRS at 6 and 12 months (p=0.02) and a significant time by SNP interaction for DRS was found (p=0.0013). The A10398 allele was associated with greater disability over time. There was a T195C by sex interaction for GOS (p=0.03) with the T195 allele associated with poorer outcomes in females. This is consistent with our findings that the T195 allele was associated with mitochondrial dysfunction (p=0.01), but only in females. This is the first study associating mitochondrial DNA variation with both mitochondrial function and neurobehavioral outcomes after TBI in humans. Our findings indicate that mitochondrial DNA variation may impact patient outcomes after a TBI potentially by influencing mitochondrial function, and that sex of the patient may be important in evaluating these associations in future studies.
PMCID: PMC3880110  PMID: 23883111
brain injury; mitochondria; outcome; polymorphism; TBI
22.  Experimental Traumatic Brain Injury Induces Rapid Aggregation and Oligomerization of Amyloid-Beta in an Alzheimer's Disease Mouse Model 
Journal of Neurotrauma  2014;31(1):125-134.
Soluble amyloid-beta (Aβ) oligomers are hypothesized to be the pathogenic species in Alzheimer's disease (AD), and increased levels of oligomers in the brain subsequent to traumatic brain injury (TBI) may exacerbate secondary injury pathways and underlie increased risk of developing AD in later life. To determine whether TBI causes Aβ aggregation and oligomerization in the brain, we exposed triple transgenic AD model mice to controlled cortical impact injury and measured levels of soluble, insoluble, and oligomeric Aβ by enzyme-linked immunosorbent assay (ELISA) at 1, 3, and 7 days postinjury. TBI rapidly increased levels of both soluble and insoluble Aβ40 and Aβ42 in the injured cortex at 1 day postinjury. We confirmed previous findings that identified damaged axons as a major site of Aβ accumulation using both immunohistochemistry and biochemistry. We also report that soluble Aβ oligomers were significantly increased in the injured cortex, as demonstrated by both ELISA and Western blot. Interestingly, the mouse brain is able to rapidly clear trauma-induced Aβ, with both soluble and insoluble Aβ species returning to sham levels by 7 days postinjury. In conclusion, we demonstrate that TBI causes acute accumulation and aggregation of Aβ in the brain, including the formation of low- and high-molecular-weight Aβ oligomers. The formation and aggregation of Aβ into toxic species acutely after injury may play a role in secondary injury cascades after trauma and, chronically, may contribute to increased risk of developing AD in later life.
PMCID: PMC3919479  PMID: 24050316
adult brain injury; axonal injury; beta amyloid
23.  Race and Insurance Disparities in Discharge to Rehabilitation for Patients with Traumatic Brain Injury 
Journal of Neurotrauma  2013;30(24):2057-2065.
Post-acute inpatient rehabilitation services are associated with improved functional outcomes among persons with traumatic brain injury (TBI). We sought to investigate racial and insurance-based disparities in access to rehabilitation. Data from the Nationwide Inpatient Sample from 2005–2010 were analyzed using standard descriptive methods and multivariable logistic regression to assess race- and insurance-based differences in access to inpatient rehabilitation after TBI, controlling for patient- and hospital-level variables. Patients with moderate to severe TBI aged 18–64 years with complete data on race and insurance status discharged alive from inpatient care were eligible for study. Among 307,675 TBI survivors meeting study criteria and potentially eligible for discharge to rehabilitation, 66% were white, 12% black, 15% Hispanic, 2% Asian, and 5% other ethnic minorities. Most whites (70%), Asians (70%), blacks (59%), and many Hispanics (49%) had insurance. Compared with insured whites, insured blacks had reduced odds of discharge to rehabilitation (odds ratio [OR] 0.84; 95% confidence interval [CI] 0.75–0.95). Also, insured Hispanics (OR 0.52; 95% CI 0.44–0.60) and insured Asians (OR 0.54; 95% CI 0.39–0.73) were less likely to be discharged to rehabilitation than insured whites. Compared with insured whites, uninsured whites (OR 0.57; 95% CI 0.51–0.63), uninsured blacks (OR 0.33; 95% CI 0.26–0.42), uninsured Hispanics (OR 0.27; 95% CI 0.22–0.33), and uninsured Asians (OR 0.40; 95% CI 0.22–0.73) were less likely to be discharged to rehabilitation. Race and insurance are strong predictors of discharge to rehabilitation among adult TBI survivors in the United States. Efforts are needed to understand and eliminate disparities in access to rehabilitation after TBI.
PMCID: PMC3868359  PMID: 23972035
disparities; epidemiology; rehabilitation; traumatic brain injury
24.  The Impact of Previous Traumatic Brain Injury on Health and Functioning: A TRACK-TBI Study 
Journal of Neurotrauma  2013;30(24):2014-2020.
The idea that multiple traumatic brain injury (TBI) can have a cumulative detrimental effect on functioning is widely accepted. Most research supporting this idea comes from athlete samples, and it is not known whether remote history of previous TBI affects functioning after subsequent TBI in community-based samples. This study investigates whether a previous history of TBI with loss of consciousness (LOC) is associated with worse health and functioning in a sample of individuals who require emergency department care for current TBI. Twenty-three percent of the 586 individuals with current TBI in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury study reported having sustained a previous TBI with LOC. Individuals with previous TBI were more likely to be unemployed (χ2=17.86; p=0.000), report a variety of chronic medical and psychiatric conditions (4.75≤χ2≥24.16; p<0.05), and report substance use (16.35≤χ2≥27.57; p<0.01) before the acute injury, compared to those with no previous TBI history. Those with a previous TBI had less-severe acute injuries, but experienced worse outcomes at 6-month follow-up. Results of a series of regression analyses controlling for demographics and acute injury severity indicated that individuals with previous TBI reported more mood symptoms, more postconcussive symptoms, lower life satisfaction, and had slower processing speed and poorer verbal learning, compared to those with no previous TBI history. These findings suggest that history of TBI with LOC may have important implications for health and psychological functioning after TBI in community-based samples.
PMCID: PMC3868372  PMID: 23924069
adult brain injury; cognitive function; recovery; traumatic brain injury
25.  Traumatic Brain Injury among Older Adults at Level I and II Trauma Centers 
Journal of Neurotrauma  2013;30(24):2001-2013.
Individuals 65 years of age and over have the highest rates of traumatic brain injury (TBI)-related hospitalizations and deaths, and older adults (defined variably across studies) have particularly poor outcomes after TBI. The factors predicting these outcomes remain poorly understood, and age-specific care guidelines for TBI do not exist. This study provides an overview of TBI in older adults using data from the National Trauma Data Bank (NTDB) gathered between 2007 and 2010, evaluates age group-specific trends in rates of TBI over time using U.S. Census data, and examines whether routinely collected information is able to predict hospital discharge status among older adults with TBI in the NTDB. Results showed a 20–25% increase in trauma center admissions for TBI among the oldest age groups (those >=75 years), relative to the general population, between 2007 and 2010. Older adults (>=65 years) with TBI tended to be white females who have incurred an injury from a fall resulting in a “severe” Abbreviated Injury Scale (AIS) score of the head. Older adults had more in-hospital procedures, such as neuroimaging and neurosurgery, tended to experience longer hospital stays, and were more likely to require continued medical care than younger adults. Older age, injury severity, and hypotension increased the odds of in-hospital death. The public health burden of TBI among older adults will likely increase as the Baby Boom generation ages. Improved primary and secondary prevention of TBI in this cohort is needed.
PMCID: PMC3868380  PMID: 23962046
adult brain injury; epidemiology; geriatric brain injury; traumatic brain injury

Results 1-25 (523)