PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Intake_epis_food(): An R Function for Fitting a Bivariate Nonlinear Measurement Error Model to Estimate Usual and Energy Intake for Episodically Consumed Foods 
Journal of statistical software  2012;46(c03):1-17.
We consider a Bayesian analysis using WinBUGS to estimate the distribution of usual intake for episodically consumed foods and energy (calories). The model uses measures of nutrition and energy intakes via a food frequency questionnaire (FFQ) along with repeated 24 hour recalls and adjusting covariates. In order to estimate the usual intake of the food, we phrase usual intake in terms of person-specific random effects, along with day-to-day variability in food and energy consumption. Three levels are incorporated in the model. The first level incorporates information about whether an individual in fact reported consumption of a particular food item. The second level incorporates the amount of intake from those individuals who reported consumption of the food, and the third level incorporates the energy intake. Estimates of posterior means of parameters and distributions of usual intakes are obtained by using Markov chain Monte Carlo calculations. This R function reports to users point estimates and credible intervals for parameters in the model, samples from their posterior distribution, samples from the distribution of usual intake and usual energy intake, trace plots of parameters and summary statistics of usual intake, usual energy intake and energy adjusted usual intake.
PMCID: PMC3403723  PMID: 22837731
excess zero models; MCMC; nonlinear mixed models; R; R2WinBUGS; zero-inflation
2.  Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components 
There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components.
We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole grains. We demonstrate numerically that our methods lead to increased speed of computation, converge to reasonable solutions, and have the flexibility to be used in either a frequentist or a Bayesian manner.
doi:10.2202/1557-4679.1267
PMCID: PMC3406506  PMID: 22848190
Bayesian approach; latent variables; measurement error; mixed effects models; nutritional epidemiology; zero-inflated data
3.  A NEW MULTIVARIATE MEASUREMENT ERROR MODEL WITH ZERO-INFLATED DIETARY DATA, AND ITS APPLICATION TO DIETARY ASSESSMENT 
The annals of applied statistics  2011;5(2B):1456-1487.
In the United States the preferred method of obtaining dietary intake data is the 24-hour dietary recall, yet the measure of most interest is usual or long-term average daily intake, which is impossible to measure. Thus, usual dietary intake is assessed with considerable measurement error. Also, diet represents numerous foods, nutrients and other components, each of which have distinctive attributes. Sometimes, it is useful to examine intake of these components separately, but increasingly nutritionists are interested in exploring them collectively to capture overall dietary patterns. Consumption of these components varies widely: some are consumed daily by almost everyone on every day, while others are episodically consumed so that 24-hour recall data are zero-inflated. In addition, they are often correlated with each other. Finally, it is often preferable to analyze the amount of a dietary component relative to the amount of energy (calories) in a diet because dietary recommendations often vary with energy level. The quest to understand overall dietary patterns of usual intake has to this point reached a standstill. There are no statistical methods or models available to model such complex multivariate data with its measurement error and zero inflation. This paper proposes the first such model, and it proposes the first workable solution to fit such a model. After describing the model, we use survey-weighted MCMC computations to fit the model, with uncertainty estimation coming from balanced repeated replication.
The methodology is illustrated through an application to estimating the population distribution of the Healthy Eating Index-2005 (HEI-2005), a multi-component dietary quality index involving ratios of interrelated dietary components to energy, among children aged 2-8 in the United States. We pose a number of interesting questions about the HEI-2005 and provide answers that were not previously within the realm of possibility, and we indicate ways that our approach can be used to answer other questions of importance to nutritional science and public health.
doi:10.1214/10-AOAS446
PMCID: PMC3145332  PMID: 21804910
Bayesian methods; Dietary assessment; Latent variables; Measurement error; Mixed models; Nutritional epidemiology; Nutritional surveillance; Zero-Inflated Data

Results 1-3 (3)