PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials 
Biometrics  2013;69(2):301-309.
Summary
In vaccine research, immune biomarkers that can reliably predict a vaccine’s effect on the clinical endpoint (i.e., surrogate markers) are important tools for guiding vaccine development. This paper addresses issues on optimizing two-phase sampling study design for evaluating surrogate markers in a principal surrogate framework, motivated by the design of a future HIV vaccine trial. To address the problem of missing potential outcomes in a standard trial design, novel trial designs have been proposed that utilize baseline predictors of the immune response biomarker(s) and/or augment the trial by vaccinating uninfected placebo recipients at the end of the trial and measuring their immune biomarkers. However, inefficient use of the augmented information can lead to counterintuitive results on the precision of estimation. To remedy this problem, we propose a pseudo-score type estimator suitable for the augmented design and characterize its asymptotic properties. This estimator has superior performance compared with existing estimators and allows calculation of analytical variances useful for guiding study design. Based on the new estimator we investigate in detail the problem of optimizing the sampling scheme of a biomarker in a vaccine efficacy trial for efficiently estimating its surrogate effect, as characterized by the vaccine efficacy curve (a causal effect predictiveness curve) and by the predicted overall vaccine efficacy using the biomarker.
doi:10.1111/biom.12014
PMCID: PMC3713795  PMID: 23409839
Closeout placebo vaccination; Estimated likelihood; Immune correlate; Principal surrogate; Pseudo-score; Two-phase sampling design
2.  Statistical identifiability and the surrogate endpoint problem, with application to vaccine trials 
Biometrics  2010;66(4):1153-1161.
Summary
Given a randomized treatment Z, a clinical outcome Y, and a biomarker S measured some fixed time after Z is administered, we may be interested in addressing the surrogate endpoint problem by evaluating whether S can be used to reliably predict the effect of Z on Y. Several recent proposals for the statistical evaluation of surrogate value have been based on the framework of principal stratification. In this paper, we consider two principal stratification estimands: joint risks and marginal risks. Joint risks measure causal associations of treatment effects on S and Y, providing insight into the surrogate value of the biomarker, but are not statistically identifiable from vaccine trial data. While marginal risks do not measure causal associations of treatment effects, they nevertheless provide guidance for future research, and we describe a data collection scheme and assumptions under which the marginal risks are statistically identifiable. We show how different sets of assumptions affect the identifiability of these estimands; in particular, we depart from previous work by considering the consequences of relaxing the assumption of no individual treatment effects on Y before S is measured. Based on algebraic relationships between joint and marginal risks, we propose a sensitivity analysis approach for assessment of surrogate value, and show that in many cases the surrogate value of a biomarker may be hard to establish, even when the sample size is large.
doi:10.1111/j.1541-0420.2009.01380.x
PMCID: PMC3597127  PMID: 20105158
Estimated likelihood; Identifiability; Principal stratification; Sensitivity analysis; Surrogate endpoint; Vaccine trials
3.  Commentary on “Principal Stratification — a Goal or a Tool?” by Judea Pearl 
This commentary takes up Pearl's welcome challenge to clearly articulate the scientific value of principal stratification estimands that we and colleagues have investigated, in the area of randomized placebo-controlled preventive vaccine efficacy trials, especially trials of HIV vaccines. After briefly arguing that certain principal stratification estimands for studying vaccine effects on post-infection outcomes are of genuine scientific interest, the bulk of our commentary argues that the “causal effect predictiveness” (CEP) principal stratification estimand for evaluating immune biomarkers as surrogate endpoints is not of ultimate scientific interest, because it evaluates surrogacy restricted to the setting of a particular vaccine efficacy trial, but is nevertheless useful for guiding the selection of primary immune biomarker endpoints in Phase I/II vaccine trials and for facilitating assessment of transportability/bridging surrogacy.
doi:10.2202/1557-4679.1341
PMCID: PMC3204668  PMID: 22049267
principal stratification; causal inference; vaccine trial
4.  MRKAd5 HIV-1 Gag/Pol/Nef Vaccine-Induced T-Cell Responses Inadequately Predict Distance of Breakthrough HIV-1 Sequences to the Vaccine or Viral Load 
PLoS ONE  2012;7(8):e43396.
Background
The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect.
Methods
Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits.
Findings
Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0·04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0·06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0·04; Pol p = 0·13; Gag p = 0·89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p>0·50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4·7 vs 5·1) but the difference was not significant (p = 0·27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0·30).
Interpretation
Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.
doi:10.1371/journal.pone.0043396
PMCID: PMC3428369  PMID: 22952672

Results 1-4 (4)