Search tips
Search criteria

Results 1-25 (2269)

Clipboard (0)

Select a Filter Below

Year of Publication
2.  Editorial Board 
PMCID: PMC3910913
3.  Subtractive Phage Display Selection from Canine Visceral Leishmaniasis Identifies Novel Epitopes That Mimic Leishmania infantum Antigens with Potential Serodiagnosis Applications 
Visceral leishmaniasis (VL) is a zoonotic disease that is endemic to Brazil, where dogs are the main domestic parasite reservoirs, and the percentages of infected dogs living in regions where canine VL (CVL) is endemic have ranged from 10% to 62%. Despite technological advances, some problems have been reported with CVL serodiagnosis. The present study describes a sequential subtractive selection through phage display technology from polyclonal antibodies of negative and positive sera that resulted in the identification of potential bacteriophage-fused peptides that were highly sensitive and specific to antibodies of CVL. A negative selection was performed in which phage clones were adhered to purified IgGs from healthy and Trypanosoma cruzi-infected dogs to eliminate cross-reactive phages. The remaining supernatant nonadhered phages were submitted to positive selection against IgG from the blood serum of dogs that were infected with Leishmania infantum. Phage clones that adhered to purified IgGs from the CVL-infected serum samples were selected. Eighteen clones were identified and their reactivities tested by a phage enzyme-linked immunosorbent assay (phage-ELISA) against the serum samples from infected dogs (n = 31) compared to those from vaccinated dogs (n = 21), experimentally infected dogs with cross-reactive parasites (n = 23), and healthy controls (n = 17). Eight clones presented sensitivity, specificity, and positive and negative predictive values of 100%, and they showed no cross-reactivity with T. cruzi- or Ehrlichia canis-infected dogs or with dogs vaccinated with two different commercial CVL vaccines in Brazil. Our study identified eight mimotopes of L. infantum antigens with 100% accuracy for CVL serodiagnosis. The use of these mimotopes by phage-ELISA proved to be an excellent assay that was reproducible, simple, fast, and inexpensive, and it can be applied in CVL-monitoring programs.
PMCID: PMC3910914  PMID: 24256622
4.  Acquisition of Oral Microbes and Associated Systemic Responses of Newborn Nonhuman Primates 
The acquisition and development of the complex oral microbiome remain ill defined. While selected species of oral bacteria have been examined in relation to their initial colonization in neonates, a more detailed understanding of the dynamics of the microbiome has been developed only in adults. The current investigation used a nonhuman primate model to document the kinetics of colonization of the oral cavities of newborns and infants by a range of oral commensals and pathogens. Differences in colonization were evaluated in newborns from mothers who were maintained on an oral hygiene regimen pre- and postparturition with those displaying naturally acquired gingivitis/periodontitis. The results demonstrate distinct profiles of acquisition of selected oral bacteria, with the transmission of targeted pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, being passed on primarily from mothers with gingivitis/periodontitis. This colonization resulted in defined patterns of systemic antibody responses in the infants. The significant relative risk measures for infection with the pathogens, as well as the relationship of oral infection and blood serum antibody levels, were consistent with those of the newborns from mothers with gingivitis/periodontitis. These findings indicate that the early acquisition of potentially pathogenic oral bacterial species might impact the development of mucosal responses in the gingiva and may provide an enhanced risk for the development of periodontitis later in life.
PMCID: PMC3910915  PMID: 24173024
5.  Antibody Response to Achromobacter xylosoxidans during HIV Infection Is Associated with Lower CD4 Levels and Increased Lymphocyte Activation 
Inflammation during HIV infection is associated with worse disease outcomes and progression. Many mechanisms have been indicted, including HIV itself, coinfections, and gut microbial translocation. Concerning microbial translocation, we hypothesized that adaptive immune responses to a specific bacterial species known to be present in gut-associated lymphoid tissue are higher among HIV-infected individuals than among HIV-uninfected controls and are associated with T cell activation and lower CD4 T cell counts. By characterizing the IgG response to Achromobacter xylosoxidans, we found that HIV-infected participants who were immunoresponsive (n = 48) had significantly lower CD4 percentages (P = 0.01), greater CD4 activation (percentages of RA− CD38+) (P = 0.03), and higher soluble CD14 (P = 0.01). HIV-positive individuals had higher anti-A. xylosoxidans IgG titers than HIV-uninfected individuals (P = 0.04). The results suggest an abnormal adaptive immune activation to gut microflora during HIV infection.
PMCID: PMC3910916  PMID: 24173027
6.  Use of Antigen-Specific Interleukin-2 To Differentiate between Cattle Vaccinated with Mycobacterium bovis BCG and Cattle Infected with M. bovis 
We describe here the application of a novel bovine interleukin-2 (IL-2) enzyme-linked immunosorbent assay (ELISA) for the measurement of antigen-specific IL-2 in cattle naturally infected with Mycobacterium bovis and in cattle vaccinated with Mycobacterium bovis BCG and then experimentally challenged with pathogenic M. bovis. Supernatants from whole-blood cultures stimulated with mycobacterial antigen (bovine purified protein derivative [PPDB] or the peptide cocktail ESAT6-CFP10) were assessed using a sandwich ELISA consisting of a new recombinant monoclonal fragment capture antibody and a commercially available polyclonal anti-bovine-IL-2. The production of IL-2 was compared to the production of gamma interferon (IFN-γ) in the same antigen-stimulated whole-blood supernatants. The data show that cattle infected with M. bovis produced quantifiable levels of antigen-specific IL-2, while IL-2 levels in cattle vaccinated with M. bovis BCG did not. Furthermore, cattle vaccinated with M. bovis BCG and then challenged with pathogenic M. bovis displayed a more rapid induction of IL-2 but ultimately had lower levels of infection-induced IL-2 than did unvaccinated challenge control cattle. These data suggest that IL-2 responses are not detectable post-BCG vaccination and that these responses may require infection with virulent M. bovis to develop. This may be useful to differentiate infected cattle from uninfected or BCG-vaccinated cattle, although the overall sensitivity is relatively low, particularly in single intradermal comparative cervical tuberculin (SICCT)-negative infected animals. Furthermore, the strength of the IL-2 response may correlate with pathology, which poses interesting questions on the immunobiology of bovine tuberculosis in contrast to human tuberculosis, which is discussed.
PMCID: PMC3910917  PMID: 24173026
7.  Simultaneous Detection of Antibodies against Apx Toxins ApxI, ApxII, ApxIII, and ApxIV in Pigs with Known and Unknown Actinobacillus pleuropneumoniae Exposure Using a Multiplexing Liquid Array Platform 
Surveillance for the presence of Actinobacillus pleuropneumoniae infection in a population plays a central role in controlling the disease. In this study, a 4-plex fluorescent microbead-based immunoassay (FMIA), developed for the simultaneous detection of IgG antibodies to repeat-in-toxin (RTX) toxins (ApxI, ApxII, ApxIII, and ApxIV) of A. pleuropneumoniae, was evaluated using (i) blood serum samples from pigs experimentally infected with each of the 15 known A. pleuropneumoniae serovars or with Actinobacillus suis, (ii) blood serum samples from pigs vaccinated with a bacterin containing A. pleuropneumoniae serovar 1, 3, 5, or 7, and (iii) blood serum samples from pigs with an unknown A. pleuropneumoniae exposure status. The results were compared to those obtained in a previous study where a dual-plate complement fixation test (CFT) and three commercially available enzyme-linked immunosorbent assays (ELISAs) were conducted on the same sample set. On samples from experimentally infected pigs, the 4-plex Apx FMIA detected specific seroconversion to Apx toxins as early as 7 days postinfection in a total of 29 pigs inoculated with 14 of the 15 A. pleuropneumoniae serovars. Seroconversion to ApxII and ApxIII was detected by FMIA in pigs inoculated with A. suis. The vaccinated pigs showed poor humoral responses against ApxI, ApxII, ApxIII, and ApxIV. In the field samples, the humoral response to ApxIV and the A. pleuropneumoniae seroprevalence increased with age. This novel FMIA (with a sensitivity of 82.7% and a specificity of 100% for the anti-ApxIV antibody) was found to be more sensitive and accurate than current tests (sensitivities, 9.5 to 56%; specificity, 100%) and is potentially an improved tool for the surveillance of disease and for monitoring vaccination compliance.
PMCID: PMC3910918  PMID: 24226091
8.  Assessment of an Oral Mycobacterium bovis BCG Vaccine and an Inactivated M. bovis Preparation for Wild Boar in Terms of Adverse Reactions, Vaccine Strain Survival, and Uptake by Nontarget Species 
Wildlife vaccination is increasingly being considered as an option for tuberculosis control. We combined data from laboratory trials and an ongoing field trial to assess the risk of an oral Mycobacterium bovis BCG vaccine and a prototype heat-inactivated Mycobacterium bovis preparation for Eurasian wild boar (Sus scrofa). We studied adverse reactions, BCG survival, BCG excretion, and bait uptake by nontarget species. No adverse reactions were observed after administration of BCG (n = 27) or inactivated M. bovis (n = 21). BCG was not found at necropsy (175 to 300 days postvaccination [n = 27]). No BCG excretion was detected in fecal samples (n = 162) or in urine or nasal, oral, or fecal swab samples at 258 days postvaccination (n = 29). In the field, we found no evidence of loss of BCG viability in baits collected after 36 h (temperature range, 11°C to 41°C). Camera trapping showed that wild boar (39%) and birds (56%) were the most frequent visitors to bait stations (selective feeders). Wild boar activity patterns were nocturnal, while diurnal activities were recorded for all bird species. We found large proportions of chewed capsules (29%) (likely ingestion of the vaccine) and lost baits (39%) (presumably consumed), and the proportion of chewed capsules showed a positive correlation with the presence of wild boar. Both results suggest proper bait consumption (68%). These results indicate that BCG vaccination in wild boar is safe and that, while bait consumption by other species is possible, this can be minimized by using selective cages and strict timing of bait deployment.
PMCID: PMC3910919  PMID: 24173022
9.  Efficient Activation of Human T Cells of Both CD4 and CD8 Subsets by Urease-Deficient Recombinant Mycobacterium bovis BCG That Produced a Heat Shock Protein 70-M. tuberculosis-Derived Major Membrane Protein II Fusion Protein 
For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8+ T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8+ T cells and perforin-producing effector CD8+ T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.
PMCID: PMC3910920  PMID: 24152387
10.  Dengue Virus Subverts the Interferon Induction Pathway via NS2B/3 Protease-IκB Kinase ε Interaction 
Dengue is the world's most common mosquito-borne viral infection and a leading cause of morbidity throughout the tropics and subtropics. Viruses are known to evade the establishment of an antiviral state by regulating the activation of interferon regulatory factor 3 (IRF3), a critical transcription factor in the alpha/beta interferon induction pathway. Here, we show that dengue virus (DENV) circumvents the induction of the retinoic acid-inducible gene I-like receptor (RLR) pathway during infection by blocking serine 386 phosphorylation and nuclear translocation of IRF3. This effect is associated with the expression of nonstructural 2B/3 protein (NS2B/3) protease in human cells. Using interaction assays, we found that NS2B/3 interacts with the cellular IκB kinase ε (IKKε). Docking computational analysis revealed that in this interaction, NS2B/3 masks the kinase domain of IKKε and potentially affects its functionality. This observation is supported by the DENV-associated inhibition of the kinase activity of IKKε. Our data identify IKKε as a novel target of DENV NS2B/3 protease.
PMCID: PMC3910921  PMID: 24173023
11.  Vertebral Aspergillosis in a Patient with Autosomal-Dominant Hyper-IgE Syndrome 
We present a report of an autosomal-dominant hyper-IgE syndrome patient with vertebral aspergillosis. Early diagnosis and antifungal therapy with surgery are crucial for improving the outcome of this aggressive condition.
PMCID: PMC3910922  PMID: 24197892
12.  Blood Collection Tubes Influence Serum Ficolin-1 and Ficolin-2 Levels 
The ficolins are members of a recently discovered family of host innate opsonins that can activate the lectin pathway of complement. The ficolins bind many ligands, although they are typically described as binding acetylated sugars. Ficolin-1 (M-ficolin) and ficolin-2 (L-ficolin) are known to bind Streptococcus pneumoniae serotypes 19C and 11A, respectively. While studying the binding of ficolins to pneumococci, we found variations in ficolin-2 binding among serum samples collected in different types of blood collection tubes. Plastic tubes, which contain a silica clot activator, yielded sera with reduced ficolin-2 binding and apparent ficolin-2 levels. We found that the silica clot activator eluted from plastic red-top tubes inhibited ficolin-2 ligand binding, while other related proteins, like mannose-binding lectin (MBL) and ficolin-1, were not affected. These tube types did not affect the concentrations of other related opsonins (C1q, MBL, or ficolin-3 [H-ficolin]). Interestingly, we also found that ficolin-1 levels were increased 2- to 3-fold in plastic serum separator tubes compared to the increases in other tube types. These findings have implications for future ficolin-1 and ficolin-2 studies, as proper sample collection and handling are essential.
PMCID: PMC3910923  PMID: 24173025
13.  Safety and Immunogenicity of Single-Dose Live Oral Cholera Vaccine Strain CVD 103-HgR, Prepared from New Master and Working Cell Banks 
Currently, no cholera vaccine is available for persons traveling from the United States to areas of high cholera transmission and who for reasons of occupation or host factors are at increased risk for development of the disease. A single-dose oral cholera vaccine with a rapid onset of protection would be particularly useful for such travelers and might also be an adjunct control measure for cholera outbreaks. The attenuated Vibrio cholerae O1 vaccine strain CVD 103-HgR harbors a 94% deletion of the cholera toxin A subunit gene (ctxA) and has a mercury resistance gene inserted in the gene encoding hemolysin A. We undertook a phase I randomized placebo-controlled two-site trial to assess the safety and immunogenicity of a preliminary formulation of CVD 103-HgR prepared from new master and working cell banks. Healthy young adults were randomized (5:1 vaccinees to placebo recipients) to receive a single oral dose of ∼4.4 × 108 CFU of vaccine or a placebo. Blood serum vibriocidal and cholera toxin-specific IgG antibodies were measured before and 10, 14, and 28 days following vaccination or placebo. Excretion of the vaccine strain in the stool was assessed during the first week postvaccination. A total of 66 subjects were enrolled, comprising 55 vaccinees and 11 placebo recipients. The vaccine was well tolerated. The overall vibriocidal and anti-cholera toxin seroconversion rates were 89% and 57%, respectively. CVD 103-HgR is undergoing renewed manufacture for licensure in the United States under the auspices of PaxVax. Our data mimic those from previous commercial formulations that elicited vibriocidal antibody seroconversion (a correlate of protection) in ∼90% of vaccinees. (This study has been registered at under registration no. NCT01585181.)
PMCID: PMC3910924  PMID: 24173028
14.  Identification and Characterization of Intestinal Antigen-Presenting Cells Involved in Uptake and Processing of a Nontoxic Recombinant Chimeric Mucosal Immunogen Based on Cholera Toxin Using Imaging Flow Cytometry 
Intragastric immunization with recombinant chimeric immunogen, SBR-CTA2/B, constructed from the saliva-binding region (SBR) of Streptococcus mutans antigen AgI/II and the A2/B subunits of cholera toxin (CT) induces salivary and circulating antibodies against S. mutans that protect against dental caries. We previously found that SBR-CTA2/B activated dendritic cells (DC) in the Peyer's patches (PP) and mesenteric lymph nodes (MLN). To identify the cells involved in the intestinal uptake of SBR-CTA2/B and the initiation of immune responses, mice were immunized intragastrically with fluorescein-labeled SBR-CTA2/B or SBR, and intestinal cells were examined by imaging flow cytometry after fluorescent staining for cell surface markers. SBR-CTA2/B was preferentially taken up by CD103+ DC in the PP and by both CD103+ and CD11c+ DC in intestinal lamina propria (LP), whereas SBR was taken up to a lesser extent by PP CD11c+ DC, within 2 to 16 h. By 16 h, CD103+ and CD11c+ DC containing fluorescein-labeled SBR-CTA2/B were found in MLN and showed upregulation of the chemokine receptor CCR7. Large numbers of SBR-CTA2/B-containing DC were found interacting with CD4+ (T helper) cells, which costained for nuclear transcription factors T-bet or RORγt, identifying them as Th1 or Th17 cells. In contrast, SBR-containing CD11c+ DC interacted preferentially with GATA3+ (Th2) cells. No SBR- or SBR-CTA2/B-containing DC were found interacting with Foxp3+ (T regulatory) cells. We conclude that the coupling of SBR to CTA2/B enhances its immunogenicity by promoting uptake by DC in both PP and LP and that these antigen-containing DC migrated to MLN and interacted preferentially with Th1 and Th17 cells to induce active immune responses.
PMCID: PMC3910925  PMID: 24197893
15.  Safety, Immunogenicity, and Antibody Persistence following an Investigational Streptococcus pneumoniae and Haemophilus influenzae Triple-Protein Vaccine in a Phase 1 Randomized Controlled Study in Healthy Adults 
We investigated a protein-based nontypeable Haemophilus influenzae (NTHi) and pneumococcal (HiP) vaccine containing pneumococcal histidine triad D (PhtD), detoxified pneumolysin (dPly), and NTHi protein D (PD) in adults. In a phase I study, 40 healthy 18- to 40-year-old subjects were randomized (2:2:1) to receive two HiP doses administered 60 days apart, with or without AS03 adjuvant (HiP-AS and HiP groups, respectively), or Engerix B (GlaxoSmithKline, Belgium) as a control. Safety, antibodies, and antigen-specific CD4+ T-cell immune responses were assessed before and until 480 days after vaccination. No serious adverse events were reported, and no subject withdrew due to an adverse event. Local and systemic symptoms were reported more frequently in the HiP-AS group than in the other two groups. The frequency and intensity of local and systemic symptoms appeared to increase after the second dose of HiP-AS or HiP but not Engerix B. Antibody geometric mean concentrations (GMCs) for PhtD, dPly, and PD increased after each dose of HiP-AS or HiP, with higher GMCs being observed in the HiP-AS group (statistically significant for anti-PD after dose 1 and anti-Ply after dose 2). GMCs remained higher at day 420 than prior to vaccination in both the HiP-AS and HiP groups. Antigen-specific CD4+ T cells increased after each dose but were unmeasurable by day 480. Two doses of an investigational PhtD-dPly-PD protein vaccine induced humoral immunity and antigen-specific CD4+ T-cell responses after each dose, with generally higher responses when the vaccine was administered with AS03. HiP combined with AS03 appeared to be more reactogenic than the antigens alone. (This study has been registered at under registration no. NCT00814489.)
PMCID: PMC3910926  PMID: 24173029
16.  Editorial Board 
PMCID: PMC3889507
17.  Immunogenicity and Safety after Booster Vaccination of Diphtheria, Tetanus, and Acellular Pertussis in Young Adults: an Open Randomized Controlled Trial in Japan 
Clinical and Vaccine Immunology : CVI  2013;20(12):1799-1804.
The recent increase of pertussis in young adults in Japan is hypothesized to be due in part to waning protection from the acellular pertussis vaccine. While a booster immunization may prevent an epidemic of pertussis among these young adults, little is known about the safety and immunogenicity of such a booster with the diphtheria, tetanus, and acellular pertussis vaccine (DTaP), which is currently available in Japan. One hundred and eleven medical students with a mean age of 19.4 years were randomly divided into 2 groups of 55 and 56 subjects and received, respectively, 0.2 or 0.5 ml of DTaP. Immunogenicity was assessed by performing the immunoassay using serum, and the geometric mean concentration (GMC), GMC ratio (GMCR), seropositive rate, and booster response rate were calculated. Adverse reactions and adverse events were monitored for 7 days after vaccination. After booster vaccination in the two groups, significant increases were found in the antibodies against pertussis toxin, filamentous hemagglutinin, diphtheria toxoid, and tetanus toxoid, and the booster response rates for all subjects reached 100%. The GMCs and GMCRs against all antigens were significantly higher in the 0.5-ml group than in the 0.2-ml group. No serious adverse events were observed. Frequencies of local reactions were similar in the 2 groups, although the frequency of severe local swelling was significantly higher in the 0.5-ml group. These data support the acceptability of booster immunization using both 0.2 and 0.5 ml of DTaP for young adults for controlling pertussis. (This study was registered at UMIN-CTR under registration number UMIN000010672.)
PMCID: PMC3889508  PMID: 24108779
18.  Immunogenicity, Safety, and Lot Consistency of a Novel Inactivated Enterovirus 71 Vaccine in Chinese Children Aged 6 to 59 Months 
Clinical and Vaccine Immunology : CVI  2013;20(12):1805-1811.
The determination of lot-to-lot consistency in the manufacturing process is a mandatory step in the clinical development of the novel enterovirus 71 (EV71) vaccine. A phase III, randomized, placebo-controlled, double-blind trial assessed the lot consistency, immunogenicity, and safety of the EV71 vaccine in children aged 6 to 59 months. Healthy children (n = 1,400) received one of three lots of the EV71 vaccine containing 400 U of EV71 antigen or a placebo at days 0 and 28. Blood samples were collected before dose 1 and at 28 days after dose 2 (day 56) for an anti-EV71 neutralizing antibody (NTAb) assay. The geometric mean titer (GMT) and the seropositivity rates (with titers of ≥1:8) were compared at day 56. After each dose, the solicited injection site and general adverse events (AEs) were recorded for 7 days, and unsolicited AEs were recorded for 28 days. At day 56, the seropositivity rates ranged from 99.7% to 100% for the vaccine groups. The NTAb GMTs for the vaccine were 140.3 (95% confidence interval [CI], 117.8 to 167.1), 141.5 (95% CI, 118.0 to 169.6), and 146.6 (95% CI, 122.5 to 175.3). The two-sided 95% CI of the log difference in GMTs between the pairs of lots were between −0.176 and 0.176, therefore meeting the predefined equivalence criteria. The percentages of subjects reporting any injection site AEs, general AEs, or serious AEs were similar across the four vaccination groups. In conclusion, the demonstration of consistency between the manufacturing lots confirms for the purposes of clinical development the reliability of the EV71 vaccine production process. (This study has been registered at under registration no. NCT01636245.)
PMCID: PMC3889509  PMID: 24108780
19.  Novel Secreted Antigens of Mycobacterium paratuberculosis as Serodiagnostic Biomarkers for Johne's Disease in Cattle 
Clinical and Vaccine Immunology : CVI  2013;20(12):1783-1791.
Johne's disease is a chronic gastroenteritis of cattle caused by Mycobacterium avium subsp. paratuberculosis that afflicts 40% of dairy herds worldwide. M. avium subsp. paratuberculosis-infected cattle can remain asymptomatic for years while transmitting the pathogen via fecal contamination and milk. Current serodiagnosis with enzyme-linked immunosorbent assays (ELISAs) fails to detect asymptomatic M. avium subsp. paratuberculosis-infected cattle due to the use of poorly defined antigens and knowledge gaps in our understanding of M. avium subsp. paratuberculosis components eliciting pathogen-specific immune responses. We set out to (i) define a subset of proteins that contain putative antigenic targets and (ii) screen these antigen pools for immunogens relevant in detecting infection. To accomplish our first objective, we captured and resolved M. avium subsp. paratuberculosis-secreted proteins using a 2-step fractionation method and reverse-phase liquid chromatography to identify 162 unique proteins, of which 66 had not been previously observed in M. avium subsp. paratuberculosis culture filtrates. Subsequent screening of M. avium subsp. paratuberculosis-secreted proteins showed four antigens, of which one or more reacted on immunoblotting with individual serum samples from 35 M. avium subsp. paratuberculosis-infected cows. Moreover, these novel antigens reacted with sera from 6 low M. avium subsp. paratuberculosis shedders and 3 fecal-culture-positive cows labeled as ELISA seronegative. The specificity of these antigens was demonstrated using negative-control sera from uninfected calves (n = 5) and uninfected cows (n = 5), which did not react to any of these antigens in immunoblotting. As three of the four antigens are novel, their characterization and incorporation into an ELISA-based format will aid in detecting asymptomatic cattle in early or subclinical stages of disease.
PMCID: PMC3889510  PMID: 24089453
20.  Clinical and Diagnostic Developments of a Gamma Interferon Release Assay for Use in Bovine Tuberculosis Control Programs 
Clinical and Vaccine Immunology : CVI  2013;20(12):1827-1835.
Currently, the Bovigam assay is used as an official supplemental test within bovine tuberculosis control programs. The objectives of the present study were to evaluate two Mycobacterium bovis-specific peptide cocktails and purified protein derivatives (PPDs) from two sources, liquid and lyophilized antigen preparations. PPDs and peptide cocktails were also used for comparison of a second-generation gamma interferon (IFN-γ) release assay kit with the currently licensed first-generation kit (Bovigam; Prionics AG). Three strains of M. bovis were used for experimental challenge: M. bovis 95-1315, M. bovis Ravenel, and M. bovis 10-7428. Additionally, samples from a tuberculosis-affected herd (i.e., naturally infected) were evaluated. Robust responses to both peptide cocktails, HP (PC-HP) and ESAT-6/CFP10 (PC-EC), and the PPDs were elicited as early as 3 weeks after challenge. Only minor differences in responses to Commonwealth Serum Laboratories (CSL) and Lelystad PPDs were detected with samples from experimentally infected animals. For instance, responses to Lelystad M. avium-derived PPD (PPDa) exceeded the respective responses to the CSL PPDa in M. bovis Ravenel-infected and control animals. However, a 1:4 dilution of stimulated plasma demonstrated greater separation of PPDb from PPDa responses (i.e., PPDb minus PPDa) with the use of Lelystad PPDs, suggesting that Lelystad PPDs provide greater diagnostic sensitivity than CSL PPDs. The responses to lyophilized and liquid antigen preparations did not differ. Responses detected with first- and second-generation IFN-γ release assay kits (Bovigam) did not differ throughout the study. In conclusion, antigens may be stored in a lyophilized state without loss in potency, PC-HP and PC-EC are dependable biomarkers for aiding in the detection of bovine tuberculosis, and second-generation Bovigam kits are comparable to currently used kits.
PMCID: PMC3889511  PMID: 24132602
21.  Evaluation of a Prototype Flow Cytometry Test for Serodiagnosis of Canine Visceral Leishmaniasis 
Clinical and Vaccine Immunology : CVI  2013;20(12):1792-1798.
Diagnosing canine visceral leishmaniasis (CVL) is a critical challenge since conventional immunoserological tests still present some deficiencies. The current study evaluated a prototype flow cytometry serology test, using antigens and fluorescent antibodies that had been stored for 1 year at 4°C, on a broad range of serum samples. Noninfected control dogs and Leishmania infantum-infected dogs were tested, and the prototype test showed excellent performance in differentiating these groups with high sensitivity, specificity, positive and negative predictive values, and accuracy (100% in all analyses). When the CVL group was evaluated according to the dogs' clinical status, the prototype test showed outstanding accuracy in all groups with positive serology (asymptomatic II, oligosymptomatic, and symptomatic). However, in dogs which had positive results by PCR-restriction fragment length polymorphism (RFLP) but negative results by conventional serology (asymptomatic I), serological reactivity was not observed. Additionally, sera from 40 dogs immunized with different vaccines (Leishmune, Leish-Tec, or LBSap) did not present serological reactivity in the prototype test. Eighty-eight dogs infected with other pathogens (Trypanosoma cruzi, Leishmania braziliensis, Ehrlichia canis, and Babesia canis) were used to determine cross-reactivity and specificity, and the prototype test performed well, particularly in dogs infected with B. canis and E. canis (100% and 93.3% specificities, respectively). In conclusion, our data reinforce the potential of the prototype test for use as a commercial kit and highlight its outstanding performance even after storage for 1 year at 4°C. Moreover, the prototype test efficiently provided accurate CVL serodiagnosis with an absence of false-positive results in vaccinated dogs and minor cross-reactivity against other canine pathogens.
PMCID: PMC3889512  PMID: 24108778
23.  Antigenicity of Recombinant Maltose Binding Protein-Mycobacterium avium subsp. paratuberculosis Fusion Proteins with and without Factor Xa Cleaving 
Clinical and Vaccine Immunology : CVI  2013;20(12):1817-1826.
Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants. Proteomic studies have shown that M. avium subsp. paratuberculosis expresses certain proteins when exposed to in vitro physiological stress conditions similar to the conditions experienced within a host during natural infection. Such proteins are hypothesized to be expressed in vivo, are recognized by the host immune system, and may be of potential use in the diagnosis of JD. In this study, 50 recombinant maltose binding protein (MBP)-M. avium subsp. paratuberculosis fusion proteins were evaluated using serum samples from sheep infected with M. avium subsp. paratuberculosis, and 29 (58%) were found to be antigenic. Among 50 fusion proteins, 10 were evaluated in MBP fusion and factor Xa-cleaved forms. A total of 31 proteins (62%) were found to be antigenic in either MBP fusion or factor Xa-cleaved forms. Antigenicity after cleavage and removal of the MBP tag was marginally enhanced.
PMCID: PMC3889514  PMID: 24132604
24.  Acknowledgment of Ad Hoc Reviewers 
Clinical and Vaccine Immunology : CVI  2013;20(12):1779-1782.
PMCID: PMC3889515
25.  Evaluation of a Commercial Enzyme-Linked Immunosorbent Assay for the Diagnosis of Bovine Tuberculosis from Milk Samples from Dairy Cows 
Clinical and Vaccine Immunology : CVI  2013;20(12):1812-1816.
Milk samples from dairy cows provide a ready source of material for measuring antibody responses to Mycobacterium bovis antigens. In this study, we evaluated the IDEXX enzyme-linked immunosorbent assay (ELISA) for the measurement of antibody responses to M. bovis antigens MPB70 and MPB83 in milk samples from New Zealand cattle. Test sensitivities for individual milk and serum samples were assessed in samples collected from 44 M. bovis-infected cows, and test specificities were assessed in milk samples collected from 356 cows from tuberculosis (TB)-free herds. Milk vat samples were collected from 505 herds from regions with relatively high or low prevalences of infection. The ELISA had a sensitivity of 50% and a specificity of 97.5% for milk samples, and the test sensitivities for milk and serum samples were the same. Dilution of the positive test milk samples in milk from noninfected cows at 1/10, 1/20, and 1/50 dilutions reduced the proportions of positive responses to 13/21, 9/21, and 4/21, respectively. Small differences were observed in the ELISA responses of milk samples from individual TB-free cows collected at different times during lactation. No significant differences were detected in the ELISA responses of milk vat samples collected from infected and noninfected herds. This study shows that milk samples can be substituted for serum samples for screening individual cows for M. bovis infection, and pooling of milk samples from 10 to 20 animals can result in a reduction in the sensitivity by approximately 50%. However, screening of milk vat samples is unlikely to be useful in countries with low prevalences of M. bovis in cattle and large herd sizes.
PMCID: PMC3889516  PMID: 24132605

Results 1-25 (2269)