PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (2053)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
issn:1556-276
1.  Catechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction 
Nanoscale Research Letters  2014;9(1):103.
An eco-friendly approach is described for the green synthesis of gold nanoparticles using catechin as a reducing and capping agent. The reaction occurred at room temperature within 1 h without the use of any external energy and an excellent yield (99%) was obtained, as determined by inductively coupled plasma mass spectrometry. Various shapes of gold nanoparticles with an estimated diameter of 16.6 nm were green-synthesized. Notably, the capping of freshly synthesized gold nanoparticles by catechin was clearly visualized with the aid of microscopic techniques, including high-resolution transmission electron microscopy, atomic force microscopy, and field emission scanning electron microscopy. Strong peaks in the X-ray diffraction pattern of the as-prepared gold nanoparticles confirmed their crystalline nature. The catalytic activity of the as-prepared gold nanoparticles was observed in the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. The results suggest that the newly prepared gold nanoparticles have potential uses in catalysis.
doi:10.1186/1556-276X-9-103
PMCID: PMC3944744  PMID: 24589224
Green synthesis; Catechin; Gold nanoparticles; Catalysis; 4-Nitrophenol reduction
2.  Pulsed laser-induced formation of silica nanogrids 
Nanoscale Research Letters  2014;9(1):102.
Silica grids with micron to sub-micron mesh sizes and wire diameters of 50 nm are fabricated on fused silica substrates. They are formed by single-pulse structured excimer laser irradiation of a UV-absorbing silicon suboxide (SiO x ) coating through the transparent substrate. A polydimethylsiloxane (PDMS) superstrate (cover layer) coated on top of the SiO x film prior to laser exposure serves as confinement for controlled laser-induced structure formation. At sufficiently high laser fluence, this process leads to grids consisting of a periodic loop network connected to the substrate at regular positions. By an additional high-temperature annealing, the residual SiO x is oxidized, and a pure SiO2 grid is obtained.
PACS
81.07.-b; 81.07.Gf; 81.65.Cf
doi:10.1186/1556-276X-9-102
PMCID: PMC3942618  PMID: 24581305
Laser; Ablation; Silica; Silicon suboxide; Nanogrid; Confinement
3.  Fabrication and electrical properties of MoS2 nanodisc-based back-gated field effect transistors 
Nanoscale Research Letters  2014;9(1):100.
Two-dimensional (2D) molybdenum disulfide (MoS2) is an attractive alternative semiconductor material for next-generation low-power nanoelectronic applications, due to its special structure and large bandgap. Here, we report the fabrication of large-area MoS2 nanodiscs and their incorporation into back-gated field effect transistors (FETs) whose electrical properties we characterize. The MoS2 nanodiscs, fabricated via chemical vapor deposition (CVD), are homogeneous and continuous, and their thickness of around 5 nm is equal to a few layers of MoS2. In addition, we find that the MoS2 nanodisc-based back-gated field effect transistors with nickel electrodes achieve very high performance. The transistors exhibit an on/off current ratio of up to 1.9 × 105, and a maximum transconductance of up to 27 μS (5.4 μS/μm). Moreover, their mobility is as high as 368 cm2/Vs. Furthermore, the transistors have good output characteristics and can be easily modulated by the back gate. The electrical properties of the MoS2 nanodisc transistors are better than or comparable to those values extracted from single and multilayer MoS2 FETs.
doi:10.1186/1556-276X-9-100
PMCID: PMC3943990  PMID: 24576344
Molybdenum disulfide; CVD; Field effect transistors; Mobility
4.  DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor 
In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.
doi:10.1186/1556-276X-9-99
PMCID: PMC3941606  PMID: 24572068
Graphene; PtAu bimetallic nanoparticles; Glucose oxidase; Biosensor; Glucose
5.  Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene 
We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important role in inducing the growth of ZnO on graphene as well as in controlling the shape, size, and density of ZnO nanostructures. High density of vertically aligned ZnO nanorods comparable to other methods was obtained. The quality of the ZnO nanostructures also depended strongly on the applied current density. The growth mechanism was proposed. According to the growth timing chart, the growth seems to involve two stages which are the formation of ZnO nucleation and the enhancement of the vertical growth of nanorods. ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics such as photovoltaic devices, sensing devices, optical devices, and photodetectors.
doi:10.1186/1556-276X-9-95
PMCID: PMC3937434  PMID: 24568668
Electrochemical deposition; Graphene; Zinc oxide; One-dimensional nanostructure
6.  Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness 
We report on the out-of-plane thermal conductivities of epitaxial Fe3O4 thin films with thicknesses of 100, 300, and 400 nm, prepared using pulsed laser deposition (PLD) on SiO2/Si substrates. The four-point probe three-omega (3-ω) method was used for thermal conductivity measurements of the Fe3O4 thin films in the temperature range of 20 to 300 K. By measuring the temperature-dependent thermal characteristics of the Fe3O4 thin films, we realized that their thermal conductivities significantly decreased with decreasing grain size and thickness of the films. The out-of-plane thermal conductivities of the Fe3O4 films were found to be in the range of 0.52 to 3.51 W/m · K at 300 K. For 100-nm film, we found that the thermal conductivity was as low as approximately 0.52 W/m · K, which was 1.7 to 11.5 order of magnitude lower than the thermal conductivity of bulk material at 300 K. Furthermore, we calculated the temperature dependence of the thermal conductivity of these Fe3O4 films using a simple theoretical Callaway model for comparison with the experimental data. We found that the Callaway model predictions agree reasonably with the experimental data. We then noticed that the thin film-based oxide materials could be efficient thermoelectric materials to achieve high performance in thermoelectric devices.
doi:10.1186/1556-276X-9-96
PMCID: PMC3938477  PMID: 24571956
Iron oxide (Fe3O4); Thermal conductivity; 2D thin films; 3-ω technique; Callaway model; In-plane and out-of-plane
7.  Effects of experimental conditions on the morphologies, structures and growth modes of pulsed laser-deposited CdS nanoneedles 
CdS nanoneedles with different morphologies, structures, and growth modes have been grown on Ni-coated Si(100) surface under different experimental conditions by pulsed laser deposition method. The effects of catalyst layer, substrate temperature, and laser pulse energy on the growth of the CdS nanoneedles were studied in detail. It was confirmed that the formation of the molten catalyst spheres is the key to the nucleation of the CdS nanoneedles by observing the morphologies of the Ni catalyst thin films annealed at different substrate temperatures. Both the substrate temperature and laser pulse energy strongly affected the growth modes of the CdS nanoneedles. The secondary growth of the smaller nanoneedles on the top of the main nanoneedles was found at appropriate conditions. A group of more completed pictures of the growth modes of the CdS nanoneedles were presented.
doi:10.1186/1556-276X-9-91
PMCID: PMC3941934  PMID: 24559455
CdS nanoneedles; Substrate temperature; Laser pulse energy; Growth mode; 61.46.-w; 61.46.Km; 68.37.Lp
8.  A facile solid-state heating method for preparation of poly(3,4-ethelenedioxythiophene)/ZnO nanocomposite and photocatalytic activity 
Poly(3,4-ethylenedioxythiophene)/zinc oxide (PEDOT/ZnO) nanocomposites were prepared by a simple solid-state heating method, in which the content of ZnO was varied from 10 to 20 wt%. The structure and morphology of the composites were characterized by Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The photocatalytic activities of the composites were investigated by the degradation of methylene blue (MB) dye in aqueous medium under UV light and natural sunlight irradiation. The FTIR, UV-vis, and XRD results showed that the composites were successfully synthesized, and there was a strong interaction between PEDOT and nano-ZnO. The TEM results suggested that the composites were a mixture of shale-like PEDOT and less aggregated nano-ZnO. The photocatalytic activity results indicated that the incorporation of ZnO nanoparticles in composites can enhance the photocatalytic efficiency of the composites under both UV light and natural sunlight irradiation, and the highest photocatalytic efficiency under UV light (98.7%) and natural sunlight (96.6%) after 5 h occurred in the PEDOT/15wt%ZnO nanocomposite.
doi:10.1186/1556-276X-9-89
PMCID: PMC3948018  PMID: 24555419
Solid-state heating method; Poly(3,4-ethylenedioxythiophene); Nano-ZnO; Composite; Photocatalyst
9.  Optical absorption, induced bleaching, and photoluminescence of CdSe nanoplatelets grown in cadmium octanoate matrix 
CdSe nanoparticles (NPs) are chemically synthesized in thermotropic ionic liquid crystalline (LC) phase of cadmium octanoate that was used as a nanoreactor. The nanocomposite samples are obtained by the rapid cooling of the LC phase to room temperature. Observed doublet structure in absorption spectra of the nanocomposites is characteristic for the two-dimensional CdSe nanoplatelets (NPLs). The thicknesses of the CdSe NPLs are 1.6, 1.9 and 2.3 nm as determined from the absorption spectra, and correspond to 4, 5 and 6 CdSe monolayers, respectively. Induced simultaneous bleaching of the doublet components observed under femtosecond laser excitation, as well as photoluminescence spectra and their kinetics are found compatible with the model of excitons with heavy- and light-hole valence bands confined in nanoplatelets.
doi:10.1186/1556-276X-9-88
PMCID: PMC3948064  PMID: 24555867
Optical absorption; Photoluminescence; CdSe nanoplatelets
10.  Surface-enhanced Raman spectra of medicines with large-scale self-assembled silver nanoparticle films based on the modified coffee ring effect 
We report here a simple and innovative method to prepare large-scale silver nanoparticle films based on the controlled coffee ring effect. It is demonstrated that the films can be used as surface-enhanced Raman scattering probes to detect low-concentration medicines. Silver nanoparticles with the average size about 70 nm were prepared by reduction of silver nitride. In our experiment, the coffee ring effect was controlled by tilting the substrates during the deposition of silver nanoparticle films. Silver nanoparticle films were spontaneously formed on the surface of silicon substrates at the temperatures about 50°C based on the solvent evaporation and the coffee ring effect. The microstructure of the films was investigated using the scanning electron microscope and atomic force microscope. The surface roughness of the films is found as small as 20 nm. Then, the films were exposed to aqueous solutions of medicine at different concentrations. A comparison with a Raman spectra measured with a conventional Raman spectrometer showed that the Raman signal can be detected in the solution with concentrations as low as 1 × 10−5 M, and the enhancement factor achieved by the silver nanoparticle film can at least reach to 1.08 × 104. Our experimental results indicate that this technique is promising in the production of large-scale silver nanoparticle films for the surface-enhanced Raman scattering. These may be utilized in biochemical and trace analytical applications.
doi:10.1186/1556-276X-9-87
PMCID: PMC3942072  PMID: 24548639
Silver nanoparticle film; Coffee ring effect; SERS
11.  Metal-particle-induced enhancement of the photoluminescence from biomolecule-functionalized carbon nanotubes 
The effect of metal particles on the photoluminescence (PL) and the Raman spectra of functionalized SWCNTs in aqueous solutions was systematically investigated by studying three different metal particles (gold, cobalt, and nickel) on three different SWCNT suspensions (DNA-, RNA-, and sodium deoxycholate salt (DOC)-functionalized SWCNTs). Substantial enhancement of the PL intensities was observed, while the Raman spectra remained unchanged, after gold, cobalt, or nickel particles were introduced into RNA-SWCNT aqueous suspensions. Almost the same results were obtained after the same metal particles were added to DNA-SWCNT aqueous suspensions. However, both the PL and the Raman spectra did not exhibit any change at all after the same metal particles were introduced into DOC-SWCNT aqueous suspensions. The unusual PL enhancements observed in this work cannot be accounted for by the three well-known mechanisms in the literature: surface-enhanced Raman scattering effect, Förster resonance energy transfer in a rebundling of isolated SWCNTs, and pH changes of the aqueous solutions.
doi:10.1186/1556-276X-9-85
PMCID: PMC3931836  PMID: 24548588
Carbon nanotube; Metal-particle-induced photoluminescence enhancement; RNA-functionalized carbon nanotube
12.  Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation 
We report the seed/catalyst-free growth of ZnO on multilayer graphene by thermal evaporation of Zn in the presence of O2 gas. The effects of substrate temperatures were studied. The changes of morphologies were very significant where the grown ZnO structures show three different structures, i.e., nanoclusters, nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. High-density vertically aligned ZnO nanorods comparable to other methods were obtained. A growth mechanism was proposed based on the obtained results. The ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics.
doi:10.1186/1556-276X-9-83
PMCID: PMC3932787  PMID: 24533793
Graphene; Thermal evaporation; Zinc oxide; Nanostructure; Hybrid integration
13.  Experimental investigation and numerical modelling of photocurrent oscillations in lattice matched Ga1−x In x N y As1−y /GaAs quantum well p-i-n photodiodes 
Photocurrent oscillations, observed at low temperatures in lattice-matched Ga1−x In x N y As1−y /GaAs multiple quantum well (MQW) p-i-n samples, are investigated as a function of applied bias and excitation wavelength and are modelled with the aid of semiconductor simulation software. The oscillations appear only at low temperatures and have the highest amplitude when the optical excitation energy is in resonance with the GaInNAs bandgap. They are explained in terms of electron accumulation and the formation of high-field domains in the GaInNAs QWs as a result of the disparity between the photoexcited electron and hole escape rates from the QWs. The application of the external bias results in the motion of the high-field domain towards the anode where the excess charge dissipates from the well adjacent to anode via tunnelling.
doi:10.1186/1556-276X-9-84
PMCID: PMC3933184  PMID: 24548551
14.  Frequency-converted dilute nitride laser diodes for mobile display applications 
We demonstrate a 1240-nm GaInNAs multi-quantum well laser diode with an integrated saturable electro-absorber whose wavelength is converted to 620 nm. For conversion, we used a MgO:LN nonlinear waveguide crystal with an integrated Bragg grating in direct coupling configuration. Broadened visible spectral width and reduced speckle as well as a high extinction ratio between the below and above threshold powers were observed in passively triggered pulsed operation with smooth direct current modulation characteristics. The demonstration opens a new avenue for developing 620-nm semiconductor lasers required for emerging projection applications.
doi:10.1186/1556-276X-9-82
PMCID: PMC3931837  PMID: 24533776
Semiconductor laser; Second harmonic generation; Visible; III-V semiconductors; Dilute nitride; GaInNAs; Mobile display; Semiconductor lasers; Laser diodes 42.55.Px; Second harmonic generation; 42.65.Ky
15.  Single-molecule conductance of dipyridines binding to Ag electrodes measured by electrochemical scanning tunneling microscopy break junction 
We have measured the conductance of three pyridyl-terminated molecules binding to Ag electrodes by using electrochemical jump-to-contact scanning tunneling microscopy break junction approach (ECSTM-BJ). Three molecules, including 4,4′-bipyridine (BPY), 1,2-di(pyridin-4-yl)ethene (BPY-EE), and 1,2-di(pyridin-4-yl)ethane (BPY-EA), contacting with Ag electrodes show three sets of conductance values, which follow the order of BPY > BPY-EE > BPY-EA. These values are smaller than those of molecules with Au electrodes, but larger than those of molecules with Cu electrodes. The difference may attribute to the different electronic coupling efficiencies between the molecules and electrodes. Moreover, the influence of the electrochemical potential on the Fermi level of electrodes is also discussed.
doi:10.1186/1556-276X-9-77
PMCID: PMC3932803  PMID: 24528610
Sliver; Single-molecule junctions; STM-BJ; Charge transport; Electrochemistry
16.  Time-resolved photoluminescence studies of annealed 1.3-μm GaInNAsSb quantum wells 
Time-resolved photoluminescence (PL) was applied to study the dynamics of carrier recombination in GaInNAsSb quantum wells (QWs) emitting near 1.3 μm and annealed at various temperatures. It was observed that the annealing temperature has a strong influence on the PL decay time, and hence, it influences the optical quality of GaInNAsSb QWs. At low temperatures, the PL decay time exhibits energy dependence (i.e., the decay times change for different energies of emitted photons), which can be explained by the presence of localized states. This energy dependence of PL decay times was fitted by a phenomenological formula, and the average value of E0, which describes the energy distribution of localized states, was extracted from this fit and found to be smallest (E0 = 6 meV) for the QW annealed at 700°C. In addition, the value of PL decay time at the peak energy was compared for all samples. The longest PL decay time (600 ps) was observed for the sample annealed at 700°C. It means that based on the PL dynamics, the optimal annealing temperature for this QW is approximately 700°C.
doi:10.1186/1556-276X-9-81
PMCID: PMC3942105  PMID: 24533740
GaInNAsSb; Quantum wells; Time-resolved spectroscopy
17.  A new nanosensor composed of laminated samarium borate and immobilized laccase for phenol determination 
A new nanosensor composed of laminated samarium borate and immobilized laccase was developed for phenol determination. The laminated samarium borate was synthesized by a mild solid-state-hydrothermal (S-S-H) method without any surfactant or Template. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used to characterize the samples. The morphology of the as-prepared materials was characterized by SEM, which shows that laminated samarium borate are uniform nanosheets with a layer-by-layer self-assembled single-crystal structure. These laminated samarium borate have typical diameters of 3 ~ 5 μm and the thickness of each layer is in the range of 10 ~ 80 nm. And then, these SmBO3 multilayers were used to immobilize the laccase. The proposed nanosensor composed of laminated samarium borate and immobilized laccase was successfully developed for phenol determination. Cyclic voltammetry were used to study the nanosensor. The proposed nanosensor displayed high sensitivity toward phenolic compounds. The linearity of the nanosensor for the detection of hydroquinone was obtained from 1 to 50 μM with a detection limit of 3 × 10-7 M (based on the S/N = 3).
doi:10.1186/1556-276X-9-76
PMCID: PMC3932843  PMID: 24528570
SmBO3; Nanosheets; Laccase; Immobilization; Determination
18.  Performance-improved thin-film a-Si:H/μc-Si:H tandem solar cells by two-dimensionally nanopatterning photoactive layer 
Tandem solar cells consisting of amorphous and microcrystalline silicon junctions with the top junction nanopatterned as a two-dimensional photonic crystal are studied. Broadband light trapping, detailed electron/hole transport, and photocurrent matching modulation are considered. It is found that the absorptances of both junctions can be significantly increased by properly engineering the duty cycles and pitches of the photonic crystal; however, the photocurrent enhancement is always unevenly distributed in the junctions, leading to a relatively high photocurrent mismatch. Further considering an optimized intermediate layer and device resistances, the optimally matched photocurrent approximately 12.74 mA/cm2 is achieved with a light-conversion efficiency predicted to be 12.67%, exhibiting an enhancement of over 27.72% compared to conventional planar configuration.
doi:10.1186/1556-276X-9-73
PMCID: PMC3925124  PMID: 24521244
Tandem solar cells; Photonic crystal; Photocurrent matching
19.  Visible and infrared emission from Si/Ge nanowires synthesized by metal-assisted wet etching 
Abstract
Multi-quantum well Si/Ge nanowires (NWs) were realized by combining molecular beam epitaxy deposition and metal-assisted wet etching, which is a low-cost technique for the synthesis of extremely dense (about 1011 cm−2) arrays of NWs with a high and controllable aspect ratio. In particular, we prepared ultrathin Si/Ge NWs having a mean diameter of about 8 nm and lengths spanning from 1.0 to 2.7 μm. NW diameter is compatible with the occurrence of quantum confinement effects and, accordingly, we observed light emission assignable to the presence of Si and Ge nanostructures. We performed a detailed study of the photoluminescence properties of the NWs, with particular attention to the excitation and de-excitation properties as a function of the temperature and of the excitation photon flux, evaluating the excitation cross section and investigating the presence of non-radiative phenomena.
PACS
61.46.Km; 78.55.-m; 78.67.Lt
doi:10.1186/1556-276X-9-74
PMCID: PMC3928609  PMID: 24521284
Nanowires; Photoluminescence; Semiconductor nanostructures
20.  Development of solution-gated graphene transistor model for biosensors 
The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters (Ids and Vgmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system.
doi:10.1186/1556-276X-9-71
PMCID: PMC3926859  PMID: 24517158
Graphene; DNA hybridization; Optimization; Solution-gated field effect transistor; Single-nucleotide polymorphism; Particle swarm optimization
21.  Field emission characteristics of zinc oxide nanowires synthesized by vapor-solid process 
Vertically aligned ZnO nanowire (NW) arrays have been synthesized on silicon substrates by chemical vapor deposition. The growth of ZnO NWs may be dominated by vapor-solid nucleation mechanism. Morphological, structural, optical, and field emission characteristics can be modified by varying the growth time. For growth time that reaches 120 min, the length and diameter of ZnO NWs are 1.5 μm and 350 nm, respectively, and they also show preferential growth orientation along the c-axis. Room-temperature photoluminescence spectra exhibit a sharp UV emission and broad green emission, and the enhanced UV-to-green emission ratio with increasing growth time might originate from the reduced concentration of surface defects. Furthermore, strong alignment and uniform distribution of ZnO NWs can also effectively enhance the antireflection to reach the average reflectance of 5.7% in the visible region. The field emission measurement indicated that the growth time plays an important role in density- and morphology-controlled ZnO NWs, and thus, ZnO NWs are expected to be used in versatile optoelectronic devices.
doi:10.1186/1556-276X-9-70
PMCID: PMC3930900  PMID: 24517113
ZnO nanowires; 1D nanostructures; Field emission; Near band edge
22.  Structure relaxation and crystallization of the CoW-CoNiW-NiW electrodeposited alloys 
The structure of electrolytically deposited nanocrystalline alloys of the CoW-CoNiW-NiW systems under low-temperature heating was investigated by means of high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM), and analytical methods such as energy dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS). Structural relaxation and crystallization were investigated at temperatures of 200°C to 300°C. The structural and compositional inhomogeneities were found in the CoW-CoNiW-NiW alloys, while the local changes in composition were found to reach 18 at.%. Nanocrystals in the alloys grew most intensely in the presence of a free surface, and we found their nuclei density to range from 2 × 1023 /m3 to 3 × 1023 /m3. It was determined that the local diffusion coefficient ranged from 0.9 to 1.7 10−18 m2/s, which could be explained by the prevalence of surface diffusion. The data gathered in these investigations can be used to predict the thermal stability of CoW-CoNiW-NiW alloys.
doi:10.1186/1556-276X-9-66
PMCID: PMC3923096  PMID: 24506913
Electron microscopy; Nanocrystalline CoW-CoNiW-NiW alloys; Crystal growth; In situ experiments; HAADF STEM; EELS; EDS; 68.37.Ma; 61.46.-w; 79.20 Uv
23.  Performances of some low-cost counter electrode materials in CdS and CdSe quantum dot-sensitized solar cells 
Different counter electrode (CE) materials based on carbon and Cu2S were prepared for the application in CdS and CdSe quantum dot-sensitized solar cells (QDSSCs). The CEs were prepared using low-cost and facile methods. Platinum was used as the reference CE material to compare the performances of the other materials. While carbon-based materials produced the best solar cell performance in CdS QDSSCs, platinum and Cu2S were superior in CdSe QDSSCs. Different CE materials have different performance in the two types of QDSSCs employed due to the different type of sensitizers and composition of polysulfide electrolytes used. The poor performance of QDSSCs with some CE materials is largely due to the lower photocurrent density and open-circuit voltage. The electrochemical impedance spectroscopy performed on the cells showed that the poor-performing QDSSCs had higher charge-transfer resistances and CPE values at their CE/electrolyte interfaces.
doi:10.1186/1556-276X-9-69
PMCID: PMC3924232  PMID: 24512605
Quantum dot-sensitized solar cell (QDSSC); CdS; CdSe; Successive ionic layer adsorption and reaction (SILAR); Counter electrode
24.  Fabrication of cubic PtCu nanocages and their enhanced electrocatalytic activity towards hydrogen peroxide 
Cubic PtCu nanocages (NCs) were successfully synthesized through a redox reaction using cuprous oxide (Cu2O) as a sacrificial template and reducing agent. The porous PtCu NCs were composed of amounts of PtCu nanograins with an average particle size of 2.9 nm. The electrocatalytic performance of the PtCu NC electrode towards H2O2 was studied by cyclic voltammetry (CV) and chronoamperometry. The prepared PtCu NC electrode exhibited excellent electrocatalytic activity towards H2O2, with a wide liner range from 5 μM to 22.25 mM, a relatively high sensitivity of 295.3 μA mM-1 cm-2, and a low detection limit of 5 μM (S/N = 3). The hollow porous nanostructure has potential applications in biosensors.
doi:10.1186/1556-276X-9-68
PMCID: PMC3924914  PMID: 24512566
Hydrogen peroxide; PtCu nanocage; Biosensor
25.  Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors 
The effects of uniaxial tensile strain on the ultimate performance of a dual-gated graphene nanoribbon field-effect transistor (GNR-FET) are studied using a fully analytical model based on effective mass approximation and semiclassical ballistic transport. The model incorporates the effects of edge bond relaxation and third nearest neighbor (3NN) interaction. To calculate the performance metrics of GNR-FETs, analytical expressions are used for the charge density, quantum capacitance, and drain current as functions of both gate and drain voltages. It is found that the current under a fixed bias can change several times with applied uniaxial strain and these changes are strongly related to strain-induced changes in both band gap and effective mass of the GNR. Intrinsic switching delay time, cutoff frequency, and Ion/Ioff ratio are also calculated for various uniaxial strain values. The results indicate that the variation in both cutoff frequency and Ion/Ioff ratio versus applied tensile strain inversely corresponds to that of the band gap and effective mass. Although a significant high frequency and switching performance can be achieved by uniaxial strain engineering, tradeoff issues should be carefully considered.
doi:10.1186/1556-276X-9-65
PMCID: PMC3923746  PMID: 24506842
Graphene nanoribbons FETs; Uniaxial strain; Analytic ballistic model; Device performance metrics

Results 1-25 (2053)