Search tips
Search criteria

Results 1-25 (91)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Nuclear Receptor Signaling: a home for nuclear receptor and coregulator signaling research 
The field of nuclear receptor and coregulator signaling has grown into one of the most active and interdisciplinary in eukaryotic biology. Papers in this field are spread widely across a vast number of journals, which complicates the task of investigators in keeping current with the literature in the field. In 2003, we launched Nuclear Receptor Signaling as an Open Access reviews, perspectives and methods journal for the nuclear receptor signaling field. Building on its success and impact on the community, we have added primary research and dataset articles to this list of article categories, and we now announce the re-launch of the journal this month. Here we will summarize the rationale that informed the creation and expansion of the journal, and discuss the possibilities for its future development.
PMCID: PMC4303009  PMID: 25614732
2.  Control of steroid receptor dynamics and function by genomic actions of the cochaperones p23 and Bag-1L 
Molecular chaperones encompass a group of unrelated proteins that facilitate the correct assembly and disassembly of other macromolecular structures, which they themselves do not remain a part of. They associate with a large and diverse set of coregulators termed cochaperones that regulate their function and specificity. Amongst others, chaperones and cochaperones regulate the activity of several signaling molecules including steroid receptors, which upon ligand binding interact with discrete nucleotide sequences within the nucleus to control the expression of diverse physiological and developmental genes. Molecular chaperones and cochaperones are typically known to provide the correct conformation for ligand binding by the steroid receptors. While this contribution is widely accepted, recent studies have reported that they further modulate steroid receptor action outside ligand binding. They are thought to contribute to receptor turnover, transport of the receptor to different subcellular localizations, recycling of the receptor on chromatin and even stabilization of the DNA-binding properties of the receptor. In addition to these combined effects with molecular chaperones, cochaperones are reported to have additional functions that are independent of molecular chaperones. Some of these functions also impact on steroid receptor action. Two well-studied examples are the cochaperones p23 and Bag-1L, which have been identified as modulators of steroid receptor activity in nuclei. Understanding details of their regulatory action will provide new therapeutic opportunities of controlling steroid receptor action independent of the widespread effects of molecular chaperones.
PMCID: PMC4242288  PMID: 25422595
steroid receptors; nuclear receptors; chaperones; cellular transport
3.  Distinct, genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators 
Glucocorticoids are a class of steroid hormones that bind to and activate the glucocorticoid receptor (GR), which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. The remodeling of chromatin and regulated assembly or disassembly of active transcription complexes by GR and other DNA-binding transcription factors is mediated and modulated by several hundred transcriptional coregulator proteins. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesized that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action, thereby providing a mechanism for fine tuning of the hormone response. We tested this by direct comparison of multiple coregulators, using siRNA to deplete the products of four steroid hormone receptor coregulator genes (CCAR1, CCAR2, CALCOCO1 and ZNF282). Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. We identified several classes of hormone-regulated genes based on the effects of coregulator depletion. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority of the several hundred modulated and blocked genes for each of the four coregulators tested were unique to that coregulator. Finally, pathway analysis on coregulator-modulated genes supported the hypothesis that individual coregulators may regulate only a subset of the many physiological pathways controlled by glucocorticoids. We conclude that gene-specific actions of coregulators correspond to specific physiological pathways, suggesting that coregulators provide a potential mechanism for physiological fine tuning in vivo and may thus represent attractive targets for therapeutic intervention.
PMCID: PMC4242289  PMID: 25422592
coregulators; gene expression; microarray; glucocorticoid receptor; gene regulation
4.  A screening cascade to identify ERβ ligands 
The establishment of effective high throughput screening cascades to identify nuclear receptor (NR) ligands that will trigger defined, therapeutically useful sets of NR activities is of considerable importance. Repositioning of existing approved drugs with known side effect profiles can provide advantages because de novo drug design suffers from high developmental failure rates and undesirable side effects which have dramatically increased costs. Ligands that target estrogen receptor β (ERβ) could be useful in a variety of diseases ranging from cancer to neurological to cardiovascular disorders. In this context, it is important to minimize cross-reactivity with ERα, which has been shown to trigger increased rates of several types of cancer. Because of high sequence similarities between the ligand binding domains of ERα and ERβ, preferentially targeting one subtype can prove challenging. Here, we describe a sequential ligand screening approach comprised of complementary in-house assays to identify small molecules that are selective for ERβ. Methods include differential scanning fluorimetry, fluorescence polarization and a GAL4 transactivation assay. We used this strategy to screen several commercially-available chemical libraries, identifying thirty ERβ binders that were examined for their selectivity for ERβ versus ERα, and tested the effects of selected ligands in a prostate cancer cell proliferation assay. We suggest that this approach could be used to rapidly identify candidates for drug repurposing.
PMCID: PMC4242290  PMID: 25422593
Screening; gene expression; drugs; nuclear receptors; chemical libraries; gene regulation
5.  Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transition 
Retinoic acid receptor β (RARβ) has been proposed to act as a tumor suppressor in breast cancer. In contrast, recent data have shown that RARβ promotes ERBB2-induced mammary gland tumorigenesis through remodeling of the stromal compartment and activation of cancer-associated fibroblasts. However, it is currently unknown whether RARβ oncogenic activity is specific to ERBB2-induced tumors, or whether it influences the initiation and progression of other breast cancer subtypes. Accordingly, we set out to investigate the involvement of RARβ in basal-like breast cancer using mouse mammary tumor virus (MMTV)-wingless-related integration site 1 (Wnt1)-induced mammary gland tumorigenesis as a model system. We found that compared with wild type mice, inactivation of Rarb resulted in a lengthy delay in Wnt1-induced mammary gland tumorigenesis and in a significantly slower tumor growth rate. Ablation of Rarb altered the composition of the stroma, repressed the activation of cancer-associated fibroblasts, and reduced the recruitment of inflammatory cells and angiogenesis. Reduced expression of IGF-1 and activity of its downstream signaling pathway contribute to attenuate EMT in the Rarb-null tumors. Our results show that, in the absence of retinoid signaling via RARβ, reduced IGF-1 signaling results in suppression of epithelial-mesenchymal transition and delays tumorigenesis induced by the Wnt1 oncogene. Accordingly, our work reinforces the concept that antagonizing RARβ-dependent retinoid signaling could provide a therapeutic avenue to treat poor outcome breast cancers.
PMCID: PMC4242291  PMID: 25422594
Breast cancer; IGF-1; nuclear receptor; oncogene; retinoid
6.  Transcriptomic analysis identifies gene networks regulated by estrogen receptor α (ERα) and ERβ that control distinct effects of different botanical estrogens 
The estrogen receptors (ERs) ERα and ERβ mediate the actions of endogenous estrogens as well as those of botanical estrogens (BEs) present in plants. BEs are ingested in the diet and also widely consumed by postmenopausal women as dietary supplements, often as a substitute for the loss of endogenous estrogens at menopause. However, their activities and efficacies, and similarities and differences in gene expression programs with respect to endogenous estrogens such as estradiol (E2) are not fully understood. Because gene expression patterns underlie and control the broad physiological effects of estrogens, we have investigated and compared the gene networks that are regulated by different BEs and by E2. Our aim was to determine if the soy and licorice BEs control similar or different gene expression programs and to compare their gene regulations with that of E2. Gene expression was examined by RNA-Seq in human breast cancer (MCF7) cells treated with control vehicle, BE or E2. These cells contained three different complements of ERs, ERα only, ERα+ERβ, or ERβ only, reflecting the different ratios of these two receptors in different human breast cancers and in different estrogen target cells. Using principal component, hierarchical clustering, and gene ontology and interactome analyses, we found that BEs regulated many of the same genes as did E2. The genes regulated by each BE, however, were somewhat different from one another, with some genes being regulated uniquely by each compound. The overlap with E2 in regulated genes was greatest for the soy isoflavones genistein and S-equol, while the greatest difference from E2 in gene expression pattern was observed for the licorice root BE liquiritigenin. The gene expression pattern of each ligand depended greatly on the cell background of ERs present. Despite similarities in gene expression pattern with E2, the BEs were generally less stimulatory of genes promoting proliferation and were more pro-apoptotic in their gene regulations than E2. The distinctive patterns of gene regulation by the individual BEs and E2 may underlie differences in the activities of these soy and licorice-derived BEs in estrogen target cells containing different levels of the two ERs.
PMCID: PMC4193135  PMID: 25363786
botanical estrogens; ERα; ERβ; gene regulatory networks; transcriptome; genistein; equol; liquiritigenin; soy; licorice
7.  Androgen receptor (AR) pathophysiological roles in androgen-related diseases in skin, bone/muscle, metabolic syndrome and neuron/immune systems: lessons learned from mice lacking AR in specific cells 
The androgen receptor (AR) is expressed ubiquitously and plays a variety of roles in a vast number of physiological and pathophysiological processes. Recent studies of AR knockout (ARKO) mouse models, particularly the cell type- or tissue-specific ARKO models, have uncovered many AR cell type- or tissue-specific pathophysiological roles in mice, which otherwise would not be delineated from conventional castration and androgen insensitivity syndrome studies. Thus, the AR in various specific cell types plays pivotal roles in production and maturation of immune cells, bone mineralization, and muscle growth. In metabolism, the ARs in brain, particularly in the hypothalamus, and the liver appear to participate in regulation of insulin sensitivity and glucose homeostasis. The AR also plays key roles in cutaneous wound healing and cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysm. This article will discuss the results obtained from the total, cell type-, or tissue-specific ARKO models. The understanding of AR cell type- or tissue-specific physiological and pathophysiological roles using these in vivo mouse models will provide useful information in uncovering AR roles in humans and eventually help us to develop better therapies via targeting the AR or its downstream signaling molecules to combat androgen/AR-related diseases.
PMCID: PMC3960937  PMID: 24653668
8.  Post-translational modifications of nuclear receptors and human disease 
Nuclear receptors (NR) impact a myriad of physiological processes including homeostasis, reproduction, development, and metabolism. NRs are regulated by post-translational modifications (PTM) that markedly impact receptor function. Recent studies have identified NR PTMs that are involved in the onset and progression of human diseases, including cancer. The majority of evidence linking NR PTMs with disease has been demonstrated for phosphorylation, acetylation and sumoylation of androgen receptor (AR), estrogen receptor α (ERα), glucocorticoid receptor (GR) and peroxisome proliferator activated receptor γ (PPARγ). Phosphorylation of AR has been associated with hormone refractory prostate cancer and decreased disease-specific survival. AR acetylation and sumoylation increased growth of prostate cancer tumor models. AR phosphorylation reduced the toxicity of the expanded polyglutamine AR in Kennedy’s Disease as a consequence of reduced ligand binding. A comprehensive evaluation of ERα phosphorylation in breast cancer revealed several sites associated with better clinical outcome to tamoxifen therapy, whereas other phosphorylation sites were associated with poorer clinical outcome. ERα acetylation and sumoylation may also have predictive value for breast cancer. GR phosphorylation and acetylation impact GR responsiveness to glucocorticoids that are used as anti-inflammatory drugs. PPARγ phosphorylation can regulate the balance between growth and differentiation in adipose tissue that is linked to obesity and insulin resistance. Sumoylation of PPARγ is linked to repression of inflammatory genes important in patients with inflammatory diseases. NR PTMs provide an additional measure of NR function that can be used as both biomarkers of disease progression, and predictive markers for patient response to NR-directed treatments.
PMCID: PMC3309075  PMID: 22438791
9.  Use of differential scanning fluorimetry as a high-throughput assay to identify nuclear receptor ligands  
Identification of ligands that interact with nuclear receptors is both a major biological problem and an important initial step in drug discovery. Several in vitro and in vivo techniques are commonly used to screen ligand candidates against nuclear receptors; however, none of the current assays allow screening without modification of either the protein and/or the ligand in a high-throughput fashion. Differential scanning fluorimetry (DSF) allows unmodified potential ligands to be screened as 10µL reactions in 96-well format against partially purified protein, revealing specific interactors. As a proof of principle, we used a commercially-available nuclear receptor ligand candidate chemical library to identify interactors of the human estrogen receptor α ligand binding domain (ERα LBD). Compounds that interact specifically with ERα LBD stabilize the protein and result in an elevation of the thermal denaturation point, as monitored by the environmentally-sensitive dye SYPRO orange. We successfully identified all three compounds in the library that have previously been identified to interact with ERα, with no false positive results.
PMCID: PMC3309076  PMID: 22438792
10.  EMBO Retinoids 2011: mechanisms, biology and pathology of signaling by retinoic acid and retinoic acid receptors 
Retinoic acid (RA) is one of the principal active metabolites of vitamin A (retinol) which mediates a spectrum of critical physiological and developmental processes. Transcriptional regulation by RA is mediated primarily by members of the retinoic acid receptor (RAR) subfamily of the nuclear receptor (NR) superfamily of transcription factors. NRs bind specific genomic DNA sequence motifs and engage coregulators and components of the basal transcription machinery to effect transcriptional regulation at target gene promoters. Disruption of signaling by retinoic acid is thought to underlie the etiology of a number of inflammatory and neoplastic diseases including breast cancer and haematological malignancies. A meeting of international researchers in retinoid signaling was convened in Strasbourg in September 2011 under the auspices of the European Molecular Biology Organization (EMBO). Retinoids 2011 encompassed myriad mechanistic, biological and pathological aspects of these hormones and their cognate receptors, as well as setting these advances in the context of wider current questions on signaling by members of the NR superfamily.
PMCID: PMC3309077  PMID: 22438793
11.  Mutual information identifies sequence positions conserved within the nuclear receptor superfamily: approach reveals functionally important regions for DNA binding specificity  
Members of the nuclear receptor superfamily differentiate in terms of specificity for DNA recognition and binding, oligomeric state, and ligand binding. The wide range of specificities are impressive given the high degree of sequence conservation in the DNA binding domain (DBD) and moderate sequence conservation with high structural similarity within the ligand binding domains (LBDs). Determining sequence positions that are conserved within nuclear receptor subfamilies can provide important indicators into the structural dynamics that translate to oligomeric state of the active receptor, DNA binding specificity and ligand affinity and selectivity. Here we present a method to analyze sequence data from all nuclear receptors that facilitates detection of co-evolving pairs using Mutual Information (MI). Using this method we demonstrate that MI can reveal functionally important sequence positions within the superfamily and the approach identified three sequence positions that have conserved sequence patterns across all nuclear receptors and subfamilies. Interestingly, two of the sequence positions identified are located within the DBD CII and the third was within Helix c of the DBD. These sequences are located within the heterodimer interface of PPARγ (CII) and RXRα (Helix c) based on PDB:3DZU. Helix c of PPARγ, which is not involved in the DBD dimer interface, binds the minor groove in the 5' flanking region in a consensus PPARγ response element (PPRE) and the corresponding RXRα (CII) is found in the 3' flanking region of RXRE (3DZU). As these three sequence positions represent unique identifiers for all nuclear receptors and they are located within the dimer interface of PPARγ-RXRα DBD (3DZU) interfacing with the flanking regions of the NRRE, we conclude they are critical sequence positions perhaps dictating nuclear receptor (NR) DNA binding specificity.
PMCID: PMC3049237  PMID: 21383938
12.  Deciphering the nuclear bile acid receptor FXR paradigm 
Originally called retinoid X receptor interacting protein 14 (RIP14), the farnesoid X receptor (FXR) was renamed after the ability of its rat form to bind supra-physiological concentrations of farnesol. In 1999 FXR was de-orphanized since primary bile acids were identified as natural ligands. Strongly expressed in the liver and intestine, FXR has been shown to be the master transcriptional regulator of several entero-hepatic metabolic pathways with relevance to the pathophysiology of conditions such as cholestasis, fatty liver disease, cholesterol gallstone disease, intestinal inflammation and tumors. Furthermore, given the importance of FXR in the gut-liver axis feedbacks regulating lipid and glucose homeostasis, FXR modulation appears to have great input in diseases such as metabolic syndrome and diabetes. Exciting results from several cellular and animal models have provided the impetus to develop synthetic FXR ligands as novel pharmacological agents. Fourteen years from its discovery, FXR has gone from bench to bedside; a novel nuclear receptor ligand is going into clinical use.
PMCID: PMC3049226  PMID: 21383957
13.  Nuclear receptor Rev-erbα: a heme receptor that coordinates circadian rhythm and metabolism  
Nuclear receptor Rev-erbα (NR1D1), previously considered to be an orphan nuclear receptor, is a receptor for heme, which promotes transcriptional repression via recruitment of the NCoR-HDAC3 corepressor complex. Rev-erbα gene regulation is circadian, and Rev-erbα comprises a critical negative limb of the core circadian clock by directly repressing the expression of the positive clock component, Bmal1. Rev-erbα also regulates the metabolic gene pathway, thus serving as a heme sensor for coordination of circadian and metabolic pathways.
PMCID: PMC2858265  PMID: 20414452
14.  PPARα: energy combustion, hypolipidemia, inflammation and cancer  
The peroxisome proliferator-activated receptor α (PPARα, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARα in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARα agonists. For example, substrates involved in fatty acid oxidation can function as PPARα ligands. PPARα serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARα modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal β-oxidation and microsomal ω-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARα by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARα requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity.
PMCID: PMC2858266  PMID: 20414453
15.  DamIP: A novel method to identify DNA binding sites in vivo  
Identifying binding sites and target genes of transcription factors is a major biologic problem. The most commonly used current technique, chromatin immunoprecipitation (ChIP), is dependent on a high quality antibody for each protein of interest, which is not always available, and is also cumbersome, involving sequential cross-linking and reversal of cross-linking. We have developed a novel strategy to study protein DNA binding sites in vivo, which we term DamIP. By tethering a mutant form of E. coli DNA adenine methyltransferase to the target protein, the fusion protein introduces N-6-adenosine methylation to sequences proximal to the protein binding sites. DNA fragments with this modification, which is absent in eukaryotes, are detected using an antibody directed against methylated adenosine. For an initial test of the method we used human estrogen receptor α (hERα), one of the best studied transcription factors. We found that expression of Dam-hERα fusion proteins in MCF-7 cells introduces adenosine methylation near a series of known direct hERα binding sites. Specific methylation tags are also found at indirect hERα binding sites, including both primary binding sites for the ER interactors AP-1 and SP1, and promoters that are activated by upstream ER bound enhancers. DamIP provides a new tool for the study of DNA interacting protein function in vivo.
PMCID: PMC2858267  PMID: 20419059
16.  PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1 
Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation.
PMCID: PMC2858268  PMID: 20419060
17.  Control of oocyte release by progesterone receptor-regulated gene expression  
The progesterone receptor (PGR) is a nuclear receptor transcription factor that is essential for female fertility, in part due to its control of oocyte release from the ovary, or ovulation. In all mammals studied to date, ovarian expression of PGR is restricted primarily to granulosa cells of follicles destined to ovulate. Granulosa cell expression of PGR is induced by the pituitary Luteinizing Hormone (LH) surge via mechanisms that are not entirely understood, but which involve activation of Protein Kinase A and modification of Sp1/Sp3 transcription factors on the PGR promoter. Null mutations for PGR or treatment with PGR antagonists block ovulation in all species analyzed, including humans. The cellular mechanisms by which PGR regulates ovulation are currently under investigation, with several downstream pathways having been identified as PGR-regulated and potentially involved in follicular rupture. Interestingly, none of these PGR-regulated genes has been demonstrated to be a direct transcriptional target of PGR. Rather, in ovarian granulosa cells, PGR may act as an inducible coregulator for constitutively bound Sp1/Sp3 transcription factors, which are key regulators for a discrete cohort of ovulatory genes.
PMCID: PMC2807638  PMID: 20087433
18.  Nuclear hormone receptor architecture - form and dynamics: The 2009 FASEB Summer Conference on Dynamic Structure of the Nuclear Hormone Receptors  
Nuclear hormone receptors (NHRs) represent a large and diverse family of ligand-activated transcription factors involved in regulating development, metabolic homeostasis, salt balance and reproductive health. The ligands for these receptors are typically small hydrophobic molecules such as steroid hormones, thyroid hormone, vitamin D3 and fatty acid derivatives. The first NHR structural information appeared ~20 years ago with the solution and crystal structures of the DNA binding domains and was followed by the structure of the agonist and antagonist bound ligand binding domains of different NHR members. Interestingly, in addition to these defined structural features, it has become clear that NHRs also possess significant structural plasticity. Thus, the dynamic structure of the NHRs was the topic of a recent stimulating and informative FASEB Summer Research Conference held in Vermont.
PMCID: PMC2807637  PMID: 20087432
19.  Hairless is a nuclear receptor corepressor essential for skin function  
The activity of nuclear receptors is modulated by numerous coregulatory factors. Corepressors can either mediate the ability of nuclear receptors to repress transcription, or can inhibit transactivation by nuclear receptors. As we learn more about the mechanisms of transcriptional repression, the importance of repression by nuclear receptors in development and disease has become clear. The protein encoded by the mammalian Hairless (Hr) gene was shown to be a corepressor by virtue of its functional similarity to the well-established corepressors N-CoR and SMRT. Mutation of the Hr gene results in congenital hair loss in both mice and men. Investigation of Hairless function both in vitro and in mouse models in vivo has revealed a critical role in maintaining skin and hair by regulating the differentiation of epithelial stem cells, as well as a putative role in regulating gene expression via chromatin remodeling.
PMCID: PMC2807636  PMID: 20087431
20.  Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression  
Progesterone is a critical regulator of normal female reproductive function, with diverse tissue-specific effects in the human. The effects of progesterone are mediated by its nuclear receptor (PR) that is expressed as two isoforms, PRA and PRB, which are virtually identical except that PRA lacks 164 amino acids that are present at the N-terminus of PRB. Considerable in vitro evidence suggests that the two PRs are functionally distinct and in animals, tissue-specific distribution patterns of PRA and PRB may account for some of the diversity of progesterone effects. In the human, PRA and PRB are equivalently expressed in most target cells, suggesting that alternative mechanisms control the diversity of progesterone actions. PR mediates the effects of progesterone by association with a range of coregulatory proteins and binding to specific target sequences in progesterone-regulated gene promoters. Ligand activation of PR results in redistribution into discrete subnuclear foci that are detectable by immunofluorescence, probably representing aggregates of multiple transcriptionally active PR-coregulator complexes. PR foci are aberrant in cancers, suggesting that the coregulator composition and number of complexes is altered. A large family of coregulators is now described and the range of proteins known to bind PR exceeds the complement required for transcriptional activation, suggesting that in the human, tissue-specific coregulator expression may modulate progesterone response. In this review, we examine the role of nuclear localization of PR, coregulator association and tissue-specific expression in modulating progesterone action in the human.
PMCID: PMC2807635  PMID: 20087430
21.  Erk signaling and chromatin remodeling in MMTV promoter activation by progestins  
Transcription from the mouse mammary tumor virus (MMTV) promoter can be induced by progestins. The progesterone receptor (PR) binds to a cluster of five hormone responsive elements (HREs) and activates the promoter by synergistic interactions with the ubiquitous transcription factor, nuclear factor 1 (NF1). Progesterone treatment of cells in culture leads to activation of the Src/Ras/Erk/Msk1 cascade. Selective inhibition of Erk, or its target kinase Msk1, interferes with chromatin remodeling and blocks MMTV activation. A complex of activated PR, Erk and Msk1 is recruited to promoter after 5 min of hormone treatment and phosphorylates histone H3 at serine 10. This modification promotes the displacement of HP1γ and subsequent chromatin remodeling. Progestin treatment leads to the recruitment of the BAF complex, which selectively displaces histones H2A and H2B from the nucleosome containing the HREs. The acetyltransferase PCAF is also required for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark, which interacts with Brg1 and Brm, anchoring the BAF complex to chromatin. In nucleosomes assembled on either MMTV or mouse rDNA promoter sequences, SWI/SNF displaces histones H2A and H2B from MMTV, but not from the rDNA nucleosome. Thus, the outcome of nucleosome remodeling by purified SWI/SNF depends on DNA sequence. The resultant H3/H4 tetramer particle is then the substrate for subsequent events in induction. Thus, initial activation of the MMTV promoter requires activation of several kinases and PCAF leading to phosphoacetylation of H3, and recruitment of BAF with subsequent removal of H2A/H2B.
PMCID: PMC2807634  PMID: 20087429
22.  Naturally occurring C-terminal splice variants of nuclear receptors  
Alternative mRNA splicing in the region encoding the C-terminus of nuclear receptors results in receptor variants lacking the entire ligand-binding domain (LBD), or a part of it, and instead contain a sequence of splice variant-specific C-terminal amino acids. A total of thirteen such splice variants have been shown to occur in vertebrates, and at least nine occur in humans. None of these receptor variants appear to be able to bind endogenous ligands and to induce transcription on promoters containing the response element for the respective canonical receptor variant. Interestingly, ten of these C-terminal splice variants have been shown to display dominant-negative activity on the transactivational properties of their canonical equivalent. Research on most of these splice variants has been limited, and the dominant-negative effect of these receptor variants has only been demonstrated in reporter assays in vitro, using transiently transfected receptors and reporter constructs. Therefore, the in vivo function and relevance of most C-terminal splice variants remains unclear. By reviewing the literature on the human glucocorticoid receptor β-isoform (hGRβ), we show that the dominant-negative effect of hGRβ is well established using more physiologically relevant readouts. The hGR β-isoform may alter gene transcription independent from the canonical receptor and increased hGRβ levels correlate with glucocorticoid resistance and the occurrence of several immune-related diseases. Thus, available data suggests that C-terminal splice variants of nuclear receptors act as dominant-negative inhibitors of receptor-mediated signaling in vivo, and that aberrant expression of these isoforms may be involved in the pathogenesis of a variety of diseases.
PMCID: PMC2716050  PMID: 19636396
23.  Developmental expression of retinoic acid receptors (RARs) 
Here, I review the developmental expression features of genes encoding the retinoic acid receptors (RARs) and the 'retinoid X' or rexinoid receptors (RXRs). The first detailed expression studies were performed in the mouse over two decades ago, following the cloning of the murine Rar genes. These studies revealed complex expression features at all stages of post-implantation development, one receptor gene (Rara) showing widespread expression, the two others (Rarb and Rarg) with highly regionalized and/or cell type-specific expression in both neural and non-neural tissues. Rxr genes also have either widespread (Rxra, Rxrb), or highly-restricted (Rxrg) expression patterns. Studies performed in zebrafish and Xenopus demonstrated expression of Rar and Rxr genes (both maternal and zygotic), at early pre-gastrulation stages. The eventual characterization of specific enzymes involved in the synthesis of retinoic acid (retinol/retinaldehyde dehydrogenases), or the triggering of its catabolism (CYP26 cytochrome P450s), all of them showing differential expression patterns, led to a clearer understanding of the phenomenons regulated by retinoic acid signaling during development. Functional studies involving targeted gene disruptions in the mouse, and additional approaches such as dominant negative receptor expression in other models, have pinpointed the specific, versus partly redundant, roles of the RARs and RXRs in many developing organ systems. These pleiotropic roles are summarized hereafter in relationship to the receptors’ expression patterns.
PMCID: PMC2686085  PMID: 19471585
24.  Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs) 
Nuclear retinoic acid receptors (RARs) are transcriptional regulators controlling the expression of specific subsets of genes in a ligand-dependent manner. The basic mechanism for switching on transcription of cognate target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes, the assembly of which is directed by the C-terminal ligand-binding domain of RARs. In addition to this scenario, new roles for the N-terminal domain and the ubiquitin-proteasome system recently emerged. Moreover, the functions of RARs are not limited to the regulation of cognate target genes, as they can transrepress other gene pathways. Finally, RARs are also involved in nongenomic biological activities such as the activation of translation and of kinase cascades. Here we will review these mechanisms, focusing on how kinase signaling and the proteasome pathway cooperate to influence the dynamics of RAR transcriptional activity.
PMCID: PMC2686084  PMID: 19471584
25.  A novel approach to investigate the subcellular distribution of nuclear receptors in vivo  
Subcellular compartmentalisation and the intracellular movement of nuclear receptors are major regulatory steps in executing their transcriptional function. Though significant progress has been made in understanding these regulatory processes in cultured mammalian cells, such results have rarely been confirmed within cells of a living mammal. This article describes a simple, time-efficient approach to study the nuclear versus cytoplasmic accumulation of nuclear receptors and the regions of nuclear receptor proteins that govern subcellular trafficking within hepatocytes of live mice. Pregnane X receptor, a xenobiotic-activated member of the nuclear receptor family, was used to exemplify the approach. Using dual-labeled wild-type and mutant PXR expression constructs, we outline their in vivo delivery, simultaneous cellular expression, visualization and categorical classification within hepatocytes of live mice. Using this approach, we identified three mutants that had an altered subcellular distribution in the presence and absence of a PXR ligand. This novel in vivo method complements the current cell culture-based experimental systems in protein subcellular localisation studies.
PMCID: PMC2686083  PMID: 19471583

Results 1-25 (91)