Search tips
Search criteria

Results 1-25 (348)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  The adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH 
Biomacromolecules  2013;14(4):1072-1077.
The underwater adhesion of marine mussels relies on mussel foot proteins (mfps) rich in the catecholic amino acid 3, 4-dihydroxyphenylalanine (Dopa). As a side-chain, Dopa is capable of strong bidentate interactions with a variety of surfaces, including many minerals and metal oxides. Titanium is among the most widely used medical implant material and quickly forms a TiO2 passivation layer under physiological conditions. Understanding the binding mechanism of Dopa to TiO2 surfaces is therefore of considerable theoretical and practical interest. Using a surface forces apparatus, we explored the force-distance profiles and adhesion energies of mussel foot protein 3 (mfp-3) to TiO2 surfaces at three different pHs (pH3, 5.5 and 7.5). At pH3, mfp-3 showed the strongest adhesion force on TiO2, with an adhesion energy of ~ −7.0 mJ/m2. Increasing the pH gives rise to two opposing effects: (1) increased oxidation of Dopa, thus decreasing availability for the Dopa-mediated adhesion, and (2) increased bidentate Dopa-Ti coordination, leading to the further stabilization of the Dopa group and thus an increasing of adhesion force. Both effects were reflected in the resonance-enhanced Raman spectra obtained at the three deposition pHs. The two competing effects give rise to a higher adhesion force of mfp-3 on TiO2 surface at pH 7.5 than at pH 5.5. Our results suggest that Dopa-containing proteins and synthetic polymers have great potential as coating materials for medical implant materials, particularly if redox activity can be controlled.
PMCID: PMC3635841  PMID: 23452271
2.  Degradable Cationic Shell Crosslinked Knedel-like Nanoparticles: Synthesis, degradation, nucleic acid binding and in vitro evaluation 
Biomacromolecules  2013;14(4):1018-1027.
In this work, degradable cationic shell crosslinked knedel-like (deg-cSCK) nanoparticles were developed as an alternative platform to replace similar non-degradable cSCK nanoparticles that have been utilized for nucleic acids delivery. An amphiphilic diblock copolymer poly(acrylamidoethylamine)90-block-poly(DL-lactide)40 (PAEA90-b-PDLLA40) was synthesized, self-assembled in aqueous solution and shell crosslinked using a hydrolyzable crosslinker to afford deg-cSCKs with an average core diameter of 45 ± 7 nm. These nanoparticles were fluorescently labeled for in vitro tracking. The enzymatic- and hydrolytic-degradability, siRNA binding affinity, cell uptake and cytotoxicity of the deg-cSCKs were evaluated. Esterase-catalyzed hydrolysis of the nanoparticles resulted in the degradation of ca. 24% of the PDLLA core into lactic acid within 5 d, as opposed to only ca. 9% degradation from aqueous solutions of the deg-cSCK nanoparticles in the absence of enzyme. Cellular uptake of deg-cSCKs was efficient, while exhibiting low cytotoxicity with LD50 values of ca. 90 μg/mL and 30 μg/mL in RAW 264.7 mouse macrophages and MLE 12 cell lines, respectively, ca. 5–6-fold lower than the cytotoxicity observed for non-degradable cSCK analogs. Additionally, deg-cSCKs were able to complex siRNA at an N/P ratio as low as 2, and were efficiently able to facilitate cellular uptake of the complexed nucleic acids.
PMCID: PMC3640429  PMID: 23510389
Poly(lactide); degradable; nanoparticle; nucleic acid delivery; cellular uptake; cytotoxicity
3.  β-Sheet Nanocrystalline Domains Formed from Phosphorylated Serine-Rich Motifs in Caddisfly Larval Silk: A Solid State NMR and XRD Study 
Biomacromolecules  2013;14(4):1140-1148.
Adhesive silks spun by aquatic caddisfly (order Trichoptera) larvae are used to build both intricate protective shelters and food harvesting nets underwater. In this study, we use 13C and 31P solid-state Nuclear Magnetic Resonance (NMR) and Wide Angle X-ray Diffraction (WAXD) as tools to elucidate molecular protein structure of caddisfly larval silk from the species Hesperophylax consimilis. Caddisfly larval silk is a fibroin protein based biopolymer containing mostly repetitive amino acid motifs. NMR and X-ray results provide strong supporting evidence for a structural model in which phosphorylated serine repeats (pSX)4 complex with divalent cations Ca2+ and Mg2+ to form rigid nanocrystalline β-sheet structures in caddisfly silk. 13C NMR data suggests that both phosphorylated serine and neighboring valine residues exist in a β-sheet secondary structure conformation while glycine and leucine residues common in GGX repeats likely reside in random coil conformations. Additionally, 31P chemical shift anisotropy (CSA) analysis indicates that the phosphates on phosphoserine residues are doubly ionized, and are charge-stabilized by divalent cations. Positively charged arginine side chains also likely play a role in charge stabilization. Finally, WAXD results finds that the silk is at least 7–8% crystalline, with β-sheet inter-plane spacings of 3.7 and 4.5 Å.
PMCID: PMC3643008  PMID: 23452243
4.  Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels 
Biomacromolecules  2013;14(4):1085-1092.
Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g. cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three dimensional (2D and 3D) culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications.
PMCID: PMC3643200  PMID: 23419055
hyaluronic acid; gelatin; hydrogel; extracellular matrix; tissue engineering
5.  Orthogonal Patterning of Multiple Biomolecules Using an Organic Fluorinated Resist and Imprint Lithography 
Biomacromolecules  2013;14(4):993-1002.
The ability to spatially deposit multiple biomolecules onto a single surface with high-resolution while retaining biomolecule stability and integrity is critical to the development of micro- and nanoscale bio-devices. While conventional lithographic patterning methods are attractive for this application, they typically require the use of UV exposure and/or harsh solvents and imaging materials, which may be damaging to fragile biomolecules. Here, we report the development of a new patterning process based on a fluorinated patterning material that is soluble in hydrofluoroether solvents, which we show to be benign to biomolecules, including proteins and DNA. We demonstrate the implementation of these materials into an orthogonal processing system for patterning multi-biomolecule arrays by imprint lithography at room temperature. We further showcase this method’s capacity for fabricating patterns of receptor-specific ligands for fundamental cell studies.
PMCID: PMC3672400  PMID: 23439033
Imprint lithography; Fluorinated resist; Hydrofluoroether solvents; Multi-protein patterning; Orthogonal processing; Patterning biomolecules
6.  Switchable elastin-like polypeptides that respond to chemical inducers of dimerization 
Biomacromolecules  2013;14(4):976-985.
Elastin-like polypeptides (ELPs) are protein polymers that reversibly phase separate in response to increased temperature, pressure, concentration, ionic strength, and molecular weight. If it were possible to engineer their phase separation to respond to specific molecular substrates, ELP fusion proteins might be engineered as biosensors, smart biomaterials, diagnostic imaging agents, and targeted therapies. What has been lacking is a strategy to design ELPs to respond to specific substrates. To address this deficiency, we report that ELP fusion proteins phase separate in response to chemical inducers of dimerization (CID). The rationale is that ELP phase separation depends on molecular weight, concentration, and local hydrophobicity; therefore, processes that affect these properties, including non-covalent dimerization, can be tuned to produce isothermal phase separation. To test this hypothesis, constructs were evaluated consisting of an immunophilin: human FK-506 binding protein 12 (FKBP) attached to an ELP. Under stoichiometric binding of a CID, the fusion protein homodimerizes and triggers phase separation. This dimerization is reversible upon saturation with excess CID or competitive binding of a small lipophilic macrolide to FKBP. By modulating the ELP molecular weight, phase separation was tuned for isothermal response to CID at physiological ionic strength and temperature (37°C). To interpret the relationship between transition temperature and equilibrium binding constants, an empirical mathematical model was employed. To the best of our knowledge, this report is the first demonstration of reversible ELP switching in response to controlled dimerization. Due to its simplicity, this strategy may be useful to design ELP fusion proteins that respond to specific dimeric biological entities.
PMCID: PMC3721738  PMID: 23406497
Elastin-like Polypeptides; Human FK-506 Binding Protein 12; Chemical Inducers of Dimerization; Rapamycin
7.  Effects of Base Polymer Hydrophobicity and End Group Modification on Polymeric Gene Delivery 
Biomacromolecules  2011;12(10):3592-3600.
A new 320 member polymer library of end-modified poly(beta amino) esters was synthesized. This library was chosen such that small differences to the structures of component backbone, side-chain, and end-group monomers could be systematically and simultaneously evaluated. The in vitro transfection efficacy and cytotoxicity of DNA nanoparticles formed from this library was assessed. This library approach enabled us not only to synthesize and test a large variety of structures rapidly, but provided us with a robust dataset to analyze for the effect of small structural permutations to polymer chain structure. Small changes to the side chains, backbones, and end groups within this polymer library produced dramatic results, with transfection efficacy of CMV-Luc varying over 4-orders in a 96-well plate format. Increasing hydrophobicity of the base polymer backbone and side chain tended to increase transfection efficacy, but the most hydrophobic side chains and backbones showed the least requirement for a hydrophobic pair. Optimal PBAE formulations were superior to commercially available non-viral alternatives FuGENE® HD and Lipofectamine™ 2000, enabling ~3-fold increased luminescence (2.2×106 RLU/well vs 8.1×105 RLU/well) and 2-fold increased transfection percentage (76.7% vs 42.9%) as measured by flow cytometry with comparable or reduced toxicity.
PMCID: PMC3959121  PMID: 21888340
Non-viral; Gene delivery; Biodegradable polymer; Combinatorial library; Hydrophobicity
8.  Polymer Coated Echogenic Lipid Nanoparticles with Dual Release Triggers 
Biomacromolecules  2013;14(3):841-853.
Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 3 MHz ultrasound for 2 minutes simultaneously with the reducing agent enhanced the release to 96%. Folic acid conjugated, doxorubicin loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be used as multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging.
PMCID: PMC3595326  PMID: 23394107
Lipid nanoparticles; Liposomes; Ultrasound; Redox triggered release; Targeted drug delivery; Echogenic liposomes
9.  Biodegradable Ferulic Acid-containing Poly(anhydride-ester): Degradation Products with Controlled Release and Sustained Antioxidant Activity 
Biomacromolecules  2013;14(3):854-861.
Ferulic acid (FA) is an antioxidant and photoprotective agent used in biomedical and cosmetic formulations to prevent skin cancer and senescence. Although FA exhibits numerous health benefits, physicochemical instability leading to decomposition hinders its efficacy. To minimize inherent decomposition, a FA-containing biodegradable polymer was prepared via solution polymerization to chemically incorporate FA into a poly(anhydride-ester). The polymer was characterized using nuclear magnetic resonance and infrared spectroscopies. The molecular weight and thermal properties were also determined. In vitro studies demonstrated that the polymer was hydrolytically degradable, thus providing controlled release of the chemically incorporated bioactive with no detectable decomposition. The polymer degradation products were found to exhibit antioxidant and antibacterial activity comparable to free FA and in vitro cell viability studies demonstrated that the polymer is non-cytotoxic towards fibroblasts. This renders the polymer a potential candidate for use as a controlled release system for skin care formulations.
PMCID: PMC3595371  PMID: 23327626
biodegradable; polymer; poly(anhydride-ester); ferulic acid; antioxidant; controlled release
10.  Two-Dimensional Nanostructure- Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering 
Biomacromolecules  2013;14(3):900-909.
This study investigates the efficacy of two dimensional (2D) carbon and inorganic nanostructures as reinforcing agents of crosslinked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multi-walled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum di-sulfite nanoplatelets (MSNPs) at 0.01–0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multi-walled carbon nanotubes (SWCNT, MWCNT) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35–108%, compressive yield strength = 26–93%, flexural modulus = 15–53%, and flexural yield strength = 101–262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNPs nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNPs showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2-D nanostructures (GONP, MSNP) are better reinforcing agents compared to 1-D nanostructures (e.g. SWCNTs). The results also indicate that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicates good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01–0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1–0.2 wt%). The analysis of surface area and aspect ratio of the nanostructures taken together with the above results indicates differences in nanostructure architecture (2D vs. 1D nanostructures), as well as the chemical compositions (inorganic vs. carbon nanostructures), number of functional groups, and structural defects for the 2D nanostructures maybe key properties that affect the mechanical properties of 2D nanostructure-reinforced PPF nanocomposites, and the reason for the enhanced mechanical properties compared to the controls.
PMCID: PMC3601907  PMID: 23405887
11.  Paclitaxel-Conjugated PAMAM Dendrimers Adversely Affect Microtubule Structure through Two Independent Modes of Action 
Biomacromolecules  2013;14(3):654-664.
Paclitaxel (Taxol®) is an anti-cancer drug that induces mitotic arrest via microtubule hyperstabilization, but causes side effects due to its hydrophobicity and cellular promiscuity. The targeted cytotoxicity of hydrophilic paclitaxel-conjugated polyamidoamine (PAMAM) dendrimers has been demonstrated in cultured cancer cells. Mechanisms of action responsible for this cytotoxicity are unknown—i.e., whether the cytotoxicity is due to paclitaxel stabilization of microtubules — as is whether paclitaxel is released intracellularly from the dendrimer. To determine whether the conjugated paclitaxel can bind microtubules, we used a combination of ensemble and single microtubule imaging techniques in vitro. We demonstrate that these conjugates adversely affect microtubules by: (1) promoting the polymerization and stabilization of microtubules in a paclitaxel-dependent manner; and (2) bundling pre-formed microtubules in a paclitaxel-independent manner, potentially due to protonation of tertiary amines in the dendrimer interior. Our results provide mechanistic insights into the cytotoxicity of paclitaxel-conjugated PAMAM dendrimers and uncover unexpected risks of using such conjugates therapeutically.
PMCID: PMC3603340  PMID: 23391096
paclitaxel; PAMAM dendrimers; microtubules; microtubule bundling; targeted cancer drug delivery
12.  Drug-Initiated Ring-Opening Polymerization of O-Carboxyanhydrides for the Preparation of Anticancer Drug-Poly(O-Carboxyanhydride) Nanoconjugates 
Biomacromolecules  2013;14(3):920-929.
We report a novel synthetic strategy of polymer-drug conjugates for nanoparticulate drug delivery: hydroxyl-containing drug (e.g., camptothecin, paclitaxel, doxorubicin and docetaxel) can initiate controlled polymerization of phenyl O-carboxyanhydride (Phe-OCA) to afford drug-poly(Phe-OCA) conjugated nanoparticles, termed drug-PheLA nanoconjugates (NCs). Our new NCs have well-controlled physicochemical properties, including high drug loadings, quantitative drug loading efficiencies, controlled particle size with narrow particle size distribution, and sustained drug release profile over days without “burst” release effect as observed in conventional polymer/drug encapsulates. Compared with polylactide NCs, the PheLA NCs have increased non-covalent hydrophobic inter-chain interactions and thereby result in remarkable stability in human serum with negligible particle aggregation. Such distinctive property can reduce the premature disassembly of NCs upon dilution in blood stream, prolong NCs' in vivo circulation with the enhancement of intratumoral accumulation of NCs, which have a bearing in therapeutic effectiveness.
PMCID: PMC3671392  PMID: 23445497
Nanoparticles; nanoconjugates; drug delivery; polymeric nanoconjugates; camptothecin; breast cancer; nanomedicine; circulation
13.  A Platelet-Mimetic Paradigm for Metastasis-Targeted Nanomedicine Platforms 
Biomacromolecules  2013;14(3):910-919.
There is compelling evidence that beyond their traditional role in hemostasis and thrombosis, platelets play a significant role in mediating hematologic mechanisms of tumor metastasis by directly and indirectly interacting with pro-metastatic cancer cells. With this rationale, we hypothesized that platelets can be an effective paradigm to develop nanomedicine platforms that utilize platelet-mimetic interaction mechanisms for targeted diagnosis and therapy of metastatic cancer cells. Here we report on our investigation of the development of nanoconstructs that interact with metastatic cancer cells via platelet-mimetic heteromultivalent ligand-receptor pathways. For our studies, pro-metastatic human breast cancer cell line MDA-MB-231 was studied for its surface expression of platelet-interactive receptors, in comparison to another low-metastatic human breast cancer cell line, MCF-7. Certain platelet-interactive receptors were found to be significantly over-expressed on the MDA-MB-231 cells and these cells showed significantly enhanced binding interactions with active platelets compared to MCF-7 cells. Based upon these observations, two specific receptor interactions were selected and corresponding ligands were engineered onto the surface of liposomes as model nanoconstructs, to enable platelet-mimetic binding to the cancer cells. Our model platelet-mimetic liposomal constructs showed enhanced targeting and attachment of MDA-MB-231 cells compared to the MCF-7 cells. These results demonstrate the promise of utilizing platelet-mimetic constructs in modifying nanovehicle constructs for metastasis-targeted drug as well as modifying surfaces for ex-vivo cell enrichment diagnostic technologies.
PMCID: PMC3690560  PMID: 23360320
cell attachment; metastasis; platelet-cancer cell interaction; platelet mimicry; targeted delivery
14.  Development of Electrically Conductive Oligo(polyethylene Glycol) Fumarate-Polypyrrole Hydrogels for Nerve Regeneration 
Biomacromolecules  2010;11(11):2845-2853.
Electrically conductive hydrogel composites consisting of oligo(polyethylene glycol) fumarate (OPF) and polypyrrole (PPy) were developed for applications in nerve regeneration. OPF-PPy scaffolds were synthesized using three different anions: naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), and dioctyl sulfosuccinate sodium salt (DOSS). Scaffolds were characterized by ATR-FTIR, XPS, AFM, dynamic mechanical analysis, electrical resistivity measurements, and swelling experiments. OPF-PPy scaffolds were shown to consist of up to 25 mol% polypyrrole with a compressive modulus ranging from 265 to 323 kPa and a sheet resistance ranging from 6 to 30 × 103 Ohms/square. In vitro studies using PC12 cells showed OPF-PPy materials had no cytotoxicity and PC12 cells showed distinctly better cell attachment and an increase in the percent of neurite bearing cells on OPF-PPy materials compared to OPF. The neurite lengths of PC12 cells were significantly higher on OPF-PPyNSA and OPF-PPyDBSA. These results show that electrically conductive OPF-PPy hydrogels are promising candidates for future applications in nerve regeneration.
PMCID: PMC3947846  PMID: 20942380
hydrogel; electrical; conductive; nerve; tissue regeneration
15.  Bioreducible polymers as a determining factor for polyplex decomplexation rate and transfection 
Biomacromolecules  2013;14(2):548-556.
Polyplex formation (complexation) and gene release from the polyplexes (decomplexation) are major events in polymeric gene delivery, however the effect of the decomplexation rate on transfection has been rarely investigated. This study employed mixed polymers of poly(L-lysine) (PLL: MW ~7.4 kDa) and reducible PLL (RPLL) (MW ~6.7 kDa) to design decomplexation rate-controllable PLL100-xRPLLx/pDNA complexes (PRLx polyplexes). The transfection efficiency of a model gene (luciferase) in MCF7 and HEK293 cell lines increased with increasing x (RPLL content) in the PRLx polyplexes until peaking at x=2.5 and x=10, respectively, after which point transfection efficiency declined rapidly. In MCF7 cells, PRL2.5 polyplex produced 3- or 223-fold higher gene expression than PLL or RPLL polyplexes, respectively. Similarly, the transfection efficiency of PRL10 polyplex-transfected HEK293 cells was 3.8- or 67-fold higher than that of PLL or RPLL polyplexes, respectively. The transfection results were not apparently related to the particle size, surface charge, complexation/compactness, cellular uptake, or cytotoxicity of the tested polyplexes. However, the decomplexation rate varied by RPLL content in the polyplexes, which in turn influenced the gene transfection. The nuclear localization of pDNA delivered by PRLx polyplexes showed a similar trend to their transfection efficiencies. This study suggests that an optimum decomplexation rate may result in high nuclear localization of pDNA and transfection. Understanding in decomplexation and intracellular localization of pDNA may help develop more effective polyplexes.
PMCID: PMC3570707  PMID: 23259985
Decomplexation; Nuclear localization; Poly(L-lysine); Polymeric gene carrier; Reducible polymer
16.  Enhancing Biocompatibility of D-Oligopeptide Hydrogels by Negative Charges 
Biomacromolecules  2013;14(2):406-412.
Oligopeptide hydrogels are emerging as useful matrices for cell culture with commercial products on the market, but L-oligopeptides are labile to proteases. An obvious solution is to create D-oligopeptide hydrogels, which lack enzymatic recognition. However, D-oligopeptide matrices do not support cell growth as well as L-oligopeptide matrices. In addition to chiral interactions, many cellular activities are strongly governed by charge-charge interactions. In this work the effects of chirality and charge on human mesenchymal stem cell (hMSC) behavior were studied using hydrogels assembled from oppositely charged oligopeptides. It was found that negative charges significantly improved hMSC viability and proliferation in D-oligopeptide gels but had little effect on their interactions with L-oligopeptide gels. This result points to the possibility of using charge and other factors to engineer biomaterials whose chirality is distinct from that of natural biomaterials, but whose performance is close to that of natural biomaterials.
PMCID: PMC3570749  PMID: 23256640
chirality; peptides; biomaterials; stem cells; biocompatibility; NMR spectroscopy
17.  Key structure of Brij for overcoming multidrug resistance in cancer 
Biomacromolecules  2013;14(2):424-430.
Multidrug resistance (MDR) is a major barrier to the chemotherapy treatment of many cancers. However, some non-ionic surfactants, for example Brij, have been shown to restore the sensitivity of MDR cells to such drugs. The aim of this study was to explore the reversal effect of Brij on MDR tumor cells and elucidate its potential mechanism. Our data indicate that the structure of Brij surfactants plays an important role in overcoming MDR in cancer, i.e. modified hydrophilic-lipophilic balance (MHLB, the ratio of the number (n) of hydrophilic repeating units of ethylene oxide (EO) to the number (m) of carbons in the hydrophobic tail (CH2).). Cell viability of cells treated with paclitaxel (PTX) nanocrystals (NCs) formulated with Brij showed positive correlations with MHLB (R2 = 0.8195); the higher the ratio of Brij to PTX in NCs, the higher cytotoxicity induced by the PTX NCs. Significant increases in intracellular accumulation of 3H-PTX (P-gp substrate) were observed in an MDR cell line (H460/taxR cells) treated with Brij 78 (MHLB=1.11) and Brij 97 (MHLB=0.6). After treatments with Brij 78 and Brij 97, the levels of intracellular ATP were decreased and verapamil induced ATPase activities of P-gp were inhibited in multidrug resistant cells. The responses of the cells to Brij 78 and Brij 97 in ATP depletion studies correlated with the cell viability induced by PTX/Brij NCs and intracellular accumulation of 3H-PTX. Brij 78 and Brij 97 could not alter the levels of P-gp expression detected by western blotting. These findings may provide some insight into the likelihood of further development of more potent P-gp inhibitors for the treatment of MDR in cancer.
PMCID: PMC3574583  PMID: 23311629
Brij; multidrug resistance (MDR); Nanocrystals; paclitaxel; P-glycoprotein
18.  Biomimetic Polymer Brushes Containing Tethered Acetylcholine Analogs for Protein and Hippocampal Neuronal Cell Patterning 
Biomacromolecules  2013;14(2):529-537.
This paper describes a method to control neuronal cell adhesion and differentiation with both chemical and topographic cues by using a spatially defined polymer brush pattern. First, biomimetic methacrylate polymer brushes containing tethered neurotransmitter acetylcholine functionalities in the form of dimethylaminoethyl methacrylate (DMAEMA), or free hydroxyl-terminated poly(ethylene glycol) (PEG) units were prepared using the “grown from” method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions. The surface properties of the resulting brushes were thoroughly characterized with various techniques and hippocampal neuronal cell culture on the brush surfaces exhibit cell viability and differentiation comparable to, or even better than, those on commonly used poly-L-lysine coated glass coverslips. The polymer brushes were then patterned via UV photolithography techniques to provide specially designed surface features with different sizes (varying from 2 µm to 200 µm) and orientations (horizontal and vertical). Protein absorption experiments and hippocampal neuronal cell culture tests on the brush patterns showed that both protein and neurons can adhere to the patterns and therefore be guided by such patterns. These results also demonstrate that, because of their unique chemical composition and well-defined nature, the developed polymer brushes may find many potential applications in cell-material interactions studies and neural tissue engineering.
PMCID: PMC3619936  PMID: 23336729
Polymer brushes; surface-initiated atom transfer radical polymerization; acetylcholine functionality; photolithography; neuronal cell patterning
19.  Optimization of Brush-like Cationic Copolymers for Non-viral Gene Delivery 
Biomacromolecules  2012;14(1):275-284.
Polyethylenimine (PEI) is one of the most broadly used polycations for gene delivery due to its high transfection efficiency and commercial availability but materials are cytotoxic and often polydisperse. The goal of current work is to develop an alternative family of polycations based on controlled living radical polymerization (CLRP) and to optimize the polymer structure for efficient gene delivery. In this study, well-defined poly(glycidyl methacrylate)(P(GMA)) homopolymers were synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization followed by decoration using three different types of oligoamines, i.e., tetraethylenepentamine (TEPA), pentaethylenehexamine (PEHA), and tris(2-aminoethyl)amine (TREN), respectively, to generate various P(GMA-oligoamine) homopolycations. The effect of P(GMA) backbone length and structure of oligoamine on gene transfer efficiency was then determined. The optimal polymer, P(GMA-TEPA)50, provided comparable transfection efficiency but lower cytotoxicity than PEI. P(GMA-TEPA)50 was then used as the cationic block in di-block copolymers containing hydrophilic N-(2-hydroxypropyl) methacrylamide (HPMA) and oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA). Polyplexes of block copolymers were stable against aggregation in physiological salt condition and in Opti-MEM due to the shielding effect of P(HPMA) and P(OEGMA). However, the presence of the HPMA/OEGMA block significantly decreased the transfection efficacy of P(GMA-TEPA)50homopolycation. To compensate for reduced cell uptake caused by the hydrophilic shell of polyplex, the integrin-binding peptide, RGD, was conjugated to the hydrophilic chain end of P(OEGMA)15-b-P(GMA-TEPA)50 copolymer by Michael-type addition reaction. At low polymer to DNA ratios, the RGD-functionalized polymer showed increased gene delivery efficiency to HeLa cells compared to analogous polymers lacking RGD.
PMCID: PMC3544971  PMID: 23240866
Brush-like polycation; non-viral gene vector; targeted gene delivery
20.  Functionalized Hydrophobic Poly(Glycerol-co-ε-Caprolactone) Depots for Controlled Drug Release 
Biomacromolecules  2012;13(2):10.1021/bm201443m.
A limitation to many polymer-based drug delivery systems is the ability to customize a particular polymer composition for tailoring drug release kinetics to a specific clinical application. In this study, we investigated the structure-function effects of conjugating various hydrophobic biocompatible side chains to poly(glycerol-co-caprolactone) copolymers with the goal of achieving prolonged and controlled release of a chemotherapeutic agent. The choice of side chain significantly affected the resulting polymer properties including thermal transitions, relative crystallinity (ΔHf), and hydrophobicity. Drug-loaded films cast from solutions of polymer and 10-hydroxycamptothecin demonstrated prolonged release from four to over seven weeks depending upon side chain structure without initial burst release behavior. Use of the stearic acid-conjugated poly(glycerol-co-caprolactone) films afforded substantial anti-cancer activity in vitro for at least 50 days when exposed to fresh cultures of A549 human lung cancer cells over 24-hour intervals, correlating well with the measured drug release kinetics.
PMCID: PMC3878815  PMID: 22242897
Hydrophobic polymer; controlled release; drug delivery; tunable release; film; chemotherapy
21.  Synthesis and Characterization of Dendron Cross-linked PEG Hydrogels as Corneal Adhesives 
Biomacromolecules  2011;12(5):10.1021/bm200039s.
In pursuit of a wound-specific corneal adhesive, hydrogels formed by the reaction of propionaldehyde, butyraldehyde, or 2-oxoethyl succinate-functionalized poly(ethylene glycol) (PEG) with a peptide-based dendritic cross-linker (Lys3Cys4) were characterized. These macromers react within minutes of mixing to form transparent and elastic hydrogels with in vitro degradation times that range from hours to months based on the type of bonds formed during the cross-linking reaction – either thiazolidine or pseudoproline. The mechanical properties of these materials, determined via parallel plate rheology, were dependent upon the polymer concentration, as was the hydrogel adhesive strength, which was determined by lap shear adhesive testing. In addition, these hydrogels were efficacious in closing ex vivo 4.1 mm central corneal lacerations: wounds closed with these hydrogel adhesives were able to withstand intraocular pressure values equivalent to, or in excess of, those obtained by closing the wounds with suturing.
PMCID: PMC3878822  PMID: 21417379
Dendron; dendrimer; hydrogel; peptide ligation; adhesive; sealant; cornea; corneal wounds
22.  Effects of Molecular Size and Surface Hydrophobicity on Oligonucleotide Interfacial Dynamics 
Biomacromolecules  2012;13(12):4002-4011.
Single-molecule total internal reflection fluorescence microscopy was used to observe the dynamic behavior of (poly)-cytosine ssDNA (1–50 nucleotides long) at the interface between aqueous solution and hydrophilic (oligoethylene oxide-modified fused silica, OEG) and hydrophobic (octadecyltriethoxysilane-modified fused silica, OTES) solid surfaces. High throughput molecular tracking was used to determine >75,000 molecular trajectories for each molecular length, which were then used to calculate surface residence time and squared displacement (i.e. “step-size”) distributions. On hydrophilic OEG surfaces, the surface residence time increased systematically with ssDNA chain length, as expected due to increasing molecule-surface interactions. Interestingly, the residence time decreased with increasing ssDNA length on the hydrophobic OTES surface, particularly for longer chains. Similarly, the interfacial mobility of polynucleotides slowed with increasing chain length on OEG, but became faster on OTES. On OTES surfaces, the rates associated with desorption and surface diffusion exhibited the distinctive anomalous temperature dependence that is characteristic of hydrophobic interactions for short chain species but not for longer chains. These combined observations suggest that long oligonucleotides adopt conformations minimizing hydrophobic interactions, e.g. by internal sequestration of hydrophobic nucleobases.
PMCID: PMC3518566  PMID: 23127250
23.  Enhanced bioactivity of internally functionalized cationic dendrimers with PEG cores 
Biomacromolecules  2012;13(12):4089-4097.
Hybrid dendritic-linear block copolymers based on a 4-arm polyethylene glycol (PEG) core were synthesized using an accelerated AB2/CD2 dendritic growth approach through orthogonal amine/epoxy and thiol-yne chemistries. The biological activity of these 4-arm and the corresponding 2-arm hybrid dendrimers revealed an enhanced, dendritic effect with an exponential increase in cell internalization concomitant with increasing amine end-groups and low cytotoxicity. Furthermore, the ability of these hybrid dendrimers to induce endosomal escape combined with their facile and efficient synthesis makes them attractive platforms for gene transfection. The 4-arm-based dendrimer showed significantly improved DNA binding and gene transfection capabilities in comparison with the 2-arm derivative. These results combined with the MD simulation indicate a significant effect of both the topology of the PEG core and the multivalency of these hybrid macromolecules, on their DNA binding and delivery capablities.
PMCID: PMC3524974  PMID: 23140570
Dendrimer; polyethylene glycol; click chemistry; fluorescence microscopy; drug delivery; gene delivery
24.  Interior engineering of a viral nanoparticle and its tumor homing properties 
Biomacromolecules  2012;13(12):3990-4001.
The development of multifunctional nanoparticles for medical applications is of growing technological interest. A single formulation containing imaging and/or drug moieties that is also capable of preferential uptake in specific cells would greatly enhance diagnostics and treatments. There is growing interest in plant-derived viral nanoparticles (VNPs) and establishing new platform technologies based on these nanoparticles inspired by nature. Cowpea mosaic virus (CPMV) serves as the standard model for VNPs. Although exterior surface modification is well known and has been comprehensively studied, little is known of interior modification. Additional functionality conferred by the capability for interior engineering would be of great benefit toward the ultimate goal of targeted drug delivery. Here, we examined the capacity of empty CPMV (eCPMV) particles devoid of RNA to encapsulate a wide variety of molecules. We systematically investigated the conjugation of fluorophores, biotin affinity tags, large molecular weight polymers such as polyethylene glycol (PEG), and various peptides through targeting reactive cysteines displayed selectively on the interior surface. Several methods are described that mutually confirm specific functionalization of the interior. Finally, CPMV and eCPMV were labeled with near-infrared fluorophores and studied side-by-side in vitro and in vivo. Passive tumor targeting via the enhanced permeability and retention effect and optical imaging were confirmed using a preclinical mouse model of colon cancer. The results of our studies lay the foundation for the development of the eCPMV platform in a range of biomedical applications.
PMCID: PMC3525095  PMID: 23121655
25.  Tetrakis (hydroxylmethyl) phosphonium chloride as a covalent crosslinking agent for cell encapsulation within protein-based hydrogels 
Biomacromolecules  2012;13(12):3912-3916.
Native tissues provide cells with complex, three dimensional (3D) environments comprised of hydrated networks of extracellular matrix proteins and sugars. By mimicking the dimensionality of native tissue while deconstructing the effects of environmental parameters, protein-based hydrogels serve as attractive, in vitro platforms to investigate cell-matrix interactions. For cell encapsulation, the process of hydrogel formation through physical or covalent crosslinking must be mild and cell compatible. While many chemical crosslinkers are commercially available for hydrogel formation, only a subset are cytocompatible; therefore, the identification of new and reliable cytocompatible crosslinkers allows for greater flexibility of hydrogel design for cell encapsulation applications. Here, we introduce tetrakis (hydroxymethyl) phosphonium chloride (THPC) as an inexpensive, amine-reactive, aqueous crosslinker for 3D cell encapsulation in protein-based hydrogels. We characterize the THPC-amine reaction by demonstrating its ability to react with primary and secondary amines of various amino acids. In addition, we demonstrate the utility of THPC to tune hydrogel gelation time (6.7 ± 0.2 to 27 ± 1.2 min) and mechanical properties (storage moduli ~250 Pa to ~2200 Pa) with a recombinant elastin-like protein. Lastly, we show cytocompatibility of THPC for cell encapsulation of two cell types, embryonic stem cells and neuronal cells, where cells exhibited the ability to differentiate and/or grow in elastin-like protein hydrogels.
PMCID: PMC3556456  PMID: 23151175
Crosslinker; Hydrogel; Cell Encapsulation; Amine-reactive

Results 1-25 (348)