PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (2189)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
2.  Role of SLMAP genetic variants in susceptibility of diabetes and diabetic retinopathy in Qatari population 
Background
Overexpression of SLMAP gene has been associated with diabetes and endothelial dysfunction of macro- and micro-blood vessels. In this study our primary objective is to explore the role of SLMAP gene polymorphisms in the susceptibility of type 2 diabetes (T2DM) with or without diabetic retinopathy (DR) in the Qatari population.
Methods
A total of 342 Qatari subjects (non-diabetic controls and T2DM patients with or without DR) were genotyped for SLMAP gene polymorphisms (rs17058639 C > T; rs1043045 C > T and rs1057719 A > G) using Taqman SNP genotyping assay.
Results
SLMAP rs17058639 C > T polymorphism was associated with the presence of DR among Qataris with T2DM. One-way ANOVA and multiple logistic regression analysis showed SLMAP SNP rs17058639 C > T as an independent risk factor for DR development. SLMAP rs17058639 C > T polymorphism also had a predictive role for the severity of DR. Haplotype Crs17058639Trs1043045Ars1057719 was associated with the increased risk for DR among Qataris with T2DM.
Conclusions
The data suggests the potential role of SLMAP SNPs as a risk factor for the susceptibility of DR among T2DM patients in the Qatari population.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-015-0411-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s12967-015-0411-6
PMCID: PMC4335364
SLMAP; Endothelial dysfunction; Genetic susceptibility; Qatari population; Diabetic retinopathy; T2DM
3.  Serum Dickkopf-1 signaling and calcium deposition in aortic valve are significantly related to the presence of concomitant coronary atherosclerosis in patients with symptomatic calcified aortic stenosis 
Background
The study aimed to assess serum RANKL:OPG ratio, Dkk-1 and deposition of calcium in aortic valve in relation to the presence of concomitant coronary atherosclerosis in patients with symptomatic calcified aortic stenosis (CAS).
Methods
OPG, soluble RANKL and Dkk-1 were measured in 218 consecutive patients who were undergoing cardiac catheterization because of symptomatic CAS. Values of studied compounds were compared between patients without (Group A) and with (Group B) coronary atherosclerosis. Computed tomography derived Agatston score was assessed by using 256-slice CT.
Results
Presence of coronary atherosclerosis was related to significantly (p = 0.007) higher OPG and to significantly (p = 0.004) lower Dkk-1. Coronary atherosclerosis was also associated with a trend towards a decrease of RANKL. RANKL/OPG Ratios (mean (95% C.I.)) were: 20.04 (16.58; 24.23) in Group A and 12.69 (9.96; 16.17) in Group B, resp., p = 0.018). After adjustment, the difference in RANKL:OPG ratios was no longer significant. Multivariable regression underscored the significance of difference in Dkk-1 (pafter adjustement = 0.020). Group A patients had significantly higher Dkk-1, significantly higher deposition of calcium in aortic valve and were symptomatic in significantly younger age (p < 0.001) as compared to group B patients: Agatston score (mean (95% C.I.)) 4069.9 (3211.8; 5134.5) and 2413.5 (1821.3; 3198.1), p = 0.007.
Conclusions
Dkk-1 and deposition of calcium in aortic valve differ significantly in relation to the presence/absence of coronary atherosclerosis in patients with symptomatic CAS. A positive association was found between Dkk-1 and calcium load in aortic valve in patients with symptomatic CAS and angiographically normal coronary arteries.
doi:10.1186/s12967-015-0423-2
PMCID: PMC4336498
Calcified aortic stenosis; Dickkopf-1 signaling; Calcium deposition in aortic valve
4.  A human immune data-informed vaccine concept elicits strong and broad T-cell specificities associated with HIV-1 control in mice and macaques 
Background
None of the HIV T-cell vaccine candidates that have reached advanced clinical testing have been able to induce protective T cell immunity. A major reason for these failures may have been suboptimal T cell immunogen designs.
Methods
To overcome this problem, we used a novel immunogen design approach that is based on functional T cell response data from more than 1,000 HIV-1 clade B and C infected individuals and which aims to direct the T cell response to the most vulnerable sites of HIV-1.
Results
Our approach identified 16 regions in Gag, Pol, Vif and Nef that were relatively conserved and predominantly targeted by individuals with reduced viral loads. These regions formed the basis of the HIVACAT T-cell Immunogen (HTI) sequence which is 529 amino acids in length, includes more than 50 optimally defined CD4+ and CD8+ T-cell epitopes restricted by a wide range of HLA class I and II molecules and covers viral sites where mutations led to a dramatic reduction in viral replicative fitness. In both, C57BL/6 mice and Indian rhesus macaques immunized with an HTI-expressing DNA plasmid (DNA.HTI) induced broad and balanced T-cell responses to several segments within Gag, Pol, and Vif. DNA.HTI induced robust CD4+ and CD8+ T cell responses that were increased by a booster vaccination using modified virus Ankara (MVA.HTI), expanding the DNA.HTI induced response to up to 3.2% IFN-γ T-cells in macaques. HTI-specific T cells showed a central and effector memory phenotype with a significant fraction of the IFN-γ+ CD8+ T cells being Granzyme B+ and able to degranulate (CD107a+).
Conclusions
These data demonstrate the immunogenicity of a novel HIV-1 T cell vaccine concept that induced broadly balanced responses to vulnerable sites of HIV-1 while avoiding the induction of responses to potential decoy targets that may divert effective T-cell responses towards variable and less protective viral determinants.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-015-0392-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s12967-015-0392-5
PMCID: PMC4336696
HIV-1 T-cell immunogen; HIV-1 specific CTL; HLA; Immunogenicity; Subdominant; Viral fitness; CTL escape; T-helper epitope; Population coverage
5.  Rosuvastatin attenuates contrast-induced nephropathy through modulation of nitric oxide, inflammatory responses, oxidative stress and apoptosis in diabetic male rats 
Background
Contrast-induced nephropathy (CIN) is an important cause of acute renal failure. We observe the effect of rosuvastatin on preventing CIN in diabetic rats in current study.
Methods
Diabetic rats were then divided into five groups: 1 diabetic rats (D), 2 diabetic rats + contrast media (DCM), 3 diabetic rats + rosuvastatin (DR), 4 diabetic rats + contrast media + rosuvastatin (DRCM), 5 non-diabetic rat control (NDCM). Contrast-induced nephropathy was induced by intravenous injection a single dose of indomethacin (10 mg/kg), double doses of N-nitro-L-arginine methyl ester (10 mg/kg) and a single dose of high-osmolar contrast medium meglumine amidotrizoate (6 ml/kg). DR and DRCM group rats were treated with rosuvastatin (10 mg/kg/day) by gavage for 5 days. At the end of treatment, the experimental groups were sacrificed, and their renal tissues were investigated histopathologically beside assessments of functional activities, nitric oxide metabolites, and oxidative stress and apoptic markers.
Results
After 6 days, serum creatinine and urine microprotein were increased, and creatinine clearance, kidney nitrite were decreased in DCM rats compared with NDCM, D, DR and DRCM groups. Histopathology scores in group DCM were increased compared with groups NDCM, D and DR, but lower in group DRCM than in group DCM (p < 0.01). Kidney thiobarbituric acid-reacting substances (TBARS), serum malondialdehyde (MDA), and serum protein carbonyl content (PCC) were increased, and serum thiol was decreased in the DCM group compared with groups NDCM, D and DR; however, these results were reversed in group DRCM compared with group DCM. Both expression of IL-6, TNF-α and the percentage of apoptotic cells were increased in group DCM than in groups NDCM, D and DR, but they were decreased in group DRCM than in group DCM. The expression of phospho-p38, cleaved capase-3, and the Bax/Bcl-2 ratio, were increased in group DCM than in groups NDCM, D and DR, but were decreased in group DRCM than in group DCM.
Conclusions
Our study demonstrated that rosuvastatin treatment attenuated both inflammatory processes and apoptosis and inhibited oxidative stress and the p38 MAPK pathway in a diabetic rat model in the setting of CIN.
doi:10.1186/s12967-015-0416-1
PMCID: PMC4329210
Diabetic; Contrast-induced nephropathy (CIN); Rosuvastatin
6.  Tumour pharmacodynamics and circulating cell free DNA in patients with refractory colorectal carcinoma treated with regorafenib 
Background
Regorafenib, a multi-kinase inhibitor, is used in the treatment of patients with metastatic colorectal cancer refractory to standard therapy. However, this benefit was limited to 1.4 months improvement in overall survival, with more than half of patients experiencing grade 3 to 4 adverse events. We aim to elucidate the pharmacodynamic effects of regorafenib in metastatic colorectal cancer and discover potential biomarkers that may predict clinical benefit.
Methods
Patients with metastatic colorectal adenocarcinoma refractory to standard therapy with tumours amenable to biopsy were eligible for the study. Regorafenib was administered orally at 160 mg daily for 3 out of 4 weeks with tumour assessment every 2 cycles. Metabolic response was assessed by FDG PET-CT scans (pre-treatment and day 15); paired tumour biopsies (pre-treatment and day 21 post-treatment) were sampled for immunohistochemistry and proteomic profiling analyses. Plasma circulating cell free DNA was quantified serially before and after treatment.
Results
There were 2(6%) partial responses out of 35 patients, and 8(23%) patients had stable disease for more than 7 months. Adverse event profile was similar to reported data. Recurrent somatic mutations in K-RAS, PIK3CA and BRAF were detected in plasma circulating cell free DNA in 14 patients; some mutations were not found in archival tumour. Total plasma circulating cell free DNA inversely correlated with progression free survival (PFS), and presence of KRAS mutations associated with shorter PFS. Immunohistochemistry of pre- and post- treatment biopsies showed majority of patients had downregulation of phosphorylated-VEGFR2, podoplanin, phosphorylated-AKT, Ki-67 and upregulation of the MEK-ERK axis, phosphorylated-C-MET, phosphorylated-SRC, phosphorylated-STAT3 and phosphorylated-JUN. Proteomic analysis of fine needle tumour aspirates showed down-regulation of PI3K was associated with longer PFS.
Conclusion
Plasma circulating cell free DNA may yield potential predictive biomarkers of regorafenib treatment. Downregulation of the PI3K-AKT axis may be an important predictor of clinical benefit.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-015-0405-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s12967-015-0405-4
PMCID: PMC4332724
Regorafenib; Colorectal carcinoma; Pharmacodynamics; Plasma cell-free DNA
7.  Performance of a multiplexed dual analyte immunoassay for the early detection of non-small cell lung cancer 
Objectives
“PAULA’s” test (Protein Assays Utilizing Lung cancer Analytes) is a novel multiplex immunoassay blood test that incorporates both tumor antigens and autoantibodies to determine the risk that lung cancer (LC) is present in individuals from a high-risk population. The test’s performance characteristics were evaluated in a study using 380 retrospective clinical serum samples.
Methods
PAULA’s test is performed on the Luminex xMAP technology platform, and detects a panel of 3 tumor antigens (CEA, CA-125, and CYFRA 21–1) and 1 autoantibody marker (NY-ESO-1). A training set (n = 230) consisting of 115 confirmed diagnoses of non-small cell lung carcinoma (NSCLC) cases and 115 age- and smoking history-matched controls was used to develop the LC predictive model. Data from an independent matched validation set (n = 150) was then used to evaluate the model developed, and determine the ability of the test to distinguish NSCLC cases from controls.
Results
The 4-biomarker panel was able to discriminate NSCLC cases from controls with 74% sensitivity, 80% specificity, and 0.81 AUC in the training set and with 77% sensitivity, 80% specificity, and 0.85 AUC in the independent validation set. The use of NY-ESO-1 autoantibodies substantially increased the overall sensitivity of NSCLC detection as compared to the 3 tumor markers alone. Overall, the multiplexed 4-biomarker panel assay demonstrated comparable performance to a previously employed 8-biomarker non-multiplexed assay.
Conclusions
These studies confirm the value of using a mixed panel of tumor antigens and autoantibodies in the early detection of NSCLC in high-risk individuals. The results demonstrate that the performance of PAULA’s test makes it suitable for use as an aid to determine which high-risk patients need to be directed to appropriate noninvasive diagnostic follow-up testing, especially low-dose CT (LDCT).
doi:10.1186/s12967-015-0419-y
PMCID: PMC4335536
Lung cancer (LC); Biomarkers; Early detection; Tumor proteins; Autoantibodies; Blood test
8.  Validation of a continuous infusion of low dose Iohexol to measure glomerular filtration rate: randomised clinical trial 
Introduction
There is currently no accurate method of measuring glomerular filtration rate (GFR) during acute kidney injury (AKI). Knowledge of how much GFR varies in stable subjects is necessary before changes in GFR can be attributed to AKI. We have designed a method of continuous measurement of GFR intended as a research tool to time effects of AKI. The aims of this crossover trial were to establish accuracy and precision of a continuous infusion of low dose Iohexol (CILDI) and variation in GFR in stable volunteers over a range of estimated GFR (23-138 mL/min/1.73 m2).
Methods
We randomised 17 volunteers to GFR measurement by plasma clearance (PC) and renal clearance (RC) of either a single bolus of Iohexol (SBI; routine method), or of a continuous infusion of low dose Iohexol (CILDI; experimental method) at 0.5 mL/h for 12 h. GFR was measured by the alternative method after a washout period (4–28 days). Iohexol concentration was measured by high performance liquid chromatography/electrospray tandem mass spectrometry and time to steady state concentration (Css) determined.
Results
Mean PC was 76.7 ± 28.5 mL/min/1.73 m2 (SBI), and 78.9 ± 28.6 mL/min/1.73 m2 (CILDI), p = 0.82. No crossover effects occurred (p = 0.85). Correlation (r) between the methods was 0.98 (p < 0.0001). Bias was 2.2 mL/min/1.73 m2 (limits of agreement −8.2 to 12.6 mL/min/1.73 m2) for CILDI. PC overestimated RC by 7.1 ± 7.3 mL/min/1.73 m2. Mean intra-individual variation in GFR (CILDI) was 10.3% (p < 0.003). Mean ± SD Css was 172 ± 185 min.
Conclusion
We hypothesise that changes in GFR >10.3% depict evolving AKI. If this were applicable to AKI, this is less than the 50% change in serum creatinine currently required to define AKI. CILDI is now ready for testing in patients with AKI.
Trial registration
This trial was registered with the European Union Clinical Trials Register (https://www.clinicaltrialsregister.eu/), registration number: 2010-019933-89.
doi:10.1186/s12967-015-0414-3
PMCID: PMC4336474
Acute kidney injury; Glomerular filtration rate; Iohexol; Validation
9.  A chimeric EBV gp350/220-based VLP replicates the virion B-cell attachment mechanism and elicits long-lasting neutralizing antibodies in mice 
Epstein-Barr virus (EBV), an oncogenic gammaherpesvirus, causes acute infectious mononucleosis (AIM) and is linked to the development of several human malignancies. There is an urgent need for a vaccine that is safe, prevents infection and/or limits disease. Unique among human herpesviruses, glycoprotein (gp)350/220, which initiates EBV attachment to susceptible host cells, is the major ligand on the EBV envelope and is highly conserved. Interaction between gp350/220 and complement receptor type 2 (CR2)/CD21 and/or (CR1)/CD35 on B-cells is required for infection. Potent antibody responses to gp350/220 occur in animal models and humans. Thus, gp350/220 provides an attractive candidate for prophylactic subunit vaccine development. However, in a recent Phase II clinical trial immunization with soluble recombinant gp350 reduced the incidence of AIM, but did not prevent infection. Despite various attempts to produce an EBV vaccine, no vaccine is licensed. Herein we describe a sub-unit vaccine against EBV based on a novel Newcastle disease virus (NDV)-virus-like particle (VLP) platform consisting of EBVgp350/220 ectodomain fused to NDV-fusion (F) protein. The chimeric protein EBVgp350/220-F is incorporated into the membrane of a VLP composed of the NDV matrix and nucleoprotein. The particles resemble native EBV in diameter and shape and bind CD21 and CD35. Immunization of BALB/c mice with EBVgp350/220-F VLPs elicited strong, long-lasting neutralizing antibody responses when assessed in vitro. This chimeric VLP is predicted to provide a superior safety profile as it is efficiently produced in Chinese hamster ovary (CHO) cells using a platform devoid of human nucleic acid and EBV-transforming genes.
doi:10.1186/s12967-015-0415-2
PMCID: PMC4328182
EBV; NDV; VLP; Vaccine; Neutralization
10.  Calcineurin inhibitors differentially alter the circadian rhythm of T-cell functionality in transplant recipients 
Background
Graft survival in transplant recipients depends on pharmacokinetics and on individual susceptibility towards immunosuppressive drugs. Nevertheless, pharmacodynamic changes in T-cell functionality in response to drugs and in relation to pharmacokinetics are poorly characterized. We therefore investigated the immunosuppressive effect of calcineurin inhibitors and steroids on general T-cell functionality after polyclonal stimulation of whole blood samples.
Methods
General T-cell functionality in the absence or presence of immunosuppressive drugs was determined in vitro directly from whole blood based on cytokine induction after stimulation with the polyclonal stimulus Staphylococcus aureus enterotoxin B. In addition, diurnal changes in leukocyte and lymphocyte subsets, and on T-cell function after intake of immunosuppressive drugs were analyzed in 19 patients during one day and compared to respective kinetics in six immunocompetent controls. Statistical analysis was performed using non-parametric and parametric tests.
Results
Susceptibility towards calcineurin inhibitors showed interindividual differences. When combined with steroids, tacrolimus led to more pronounced increase in the inhibitory activity as compared to cyclosporine A. While circadian alterations in leukocyte subpopulations and T-cell function in controls were related to endogenous cortisol levels, T-cell functionality in transplant recipients decreased after intake of the morning medication, which was more pronounced in patients with higher drug-dosages. Interestingly, calcineurin inhibitors differentially affected circadian rhythm of T-cell function, as patients on cyclosporine A showed a biphasic decrease in T-cell reactivity after drug-intake in the morning and evening, whereas T-cell reactivity in patients on tacrolimus remained rather stable.
Conclusions
The whole blood assay allows assessment of the inhibitory activity of immunosuppressive drugs in clinically relevant concentrations. Circadian alterations in T-cell function are determined by dose and type of immunosuppressive drugs and show distinct differences between cyclosporine A and tacrolimus. In future these findings may have practical implications to estimate the net immunosuppressive effect of a given drug-regimen that daily acts in an individual patient, and may contribute to individualize immunosuppression.
doi:10.1186/s12967-015-0420-5
PMCID: PMC4329209
Circadian rhythm; T-cell reactivity; Flow-cytometry; Whole blood assay; Kidney transplantation; Calcineurin inhibitor; Tacrolimus; Cyclosporine A; Immunosuppression; Pharmacokinetics; Pharmacodynamics
12.  Diacetyloxyl derivatization of the fibroblast growth factor inhibitor dobesilate enhances its anti-inflammatory, anti-angiogenic and anti-tumoral activities 
Background
Dobesilate (2,5-dihydroxyphenyl sulfonate, DHPS) was recently identified as the most potent member of a family of fibroblast growth factor (FGF) inhibitors headed by gentisic acid, one of the main catabolites of aspirin. Although FGFs were first described as inducers of angiogenesis, they were soon recognized as broad spectrum mitogens. Furthermore, in the last decade these proteins have been shown to participate directly in the onset of inflammation, and their potential angiogenic activity often contributes to the inflammatory process in vivo. The aim of this work was to evaluate the anti-inflammatory, anti-angiogenic and anti-tumoral activities of the derivative of DHPS obtained by acetoxylation of its two hydroxyl groups (2,5-diacetoxyphenyl sulfonate; DAPS).
Methods
Anti-inflammatory, anti-angiogenic and anti-tumoral activities of DHPS and DAPS were compared using in vivo assays of dermatitis, angiogenesis and tumorigenesis. The effects of both compounds on myeloperoxidase (MPO) and cyclooxygenase (COX) activities, cytokine production and FGF-induced fibroblast proliferation were also determined.
Results
Topical DAPS is more effective than DHPS in preventing inflammatory signs (increased vascular permeability, edema, leukocyte infiltration, MPO activation) caused by contact dermatitis induction in rat ears. DAPS, but not DHPS, effectively inhibits COX-1 and COX-2 activities. DAPS also reduces the increase in serum cytokine concentration induced by lipopolysaccharide in rats. Furthermore, DAPS displays higher in vivo efficacy than DHPS in inhibiting FGF-induced angiogenesis and heterotopic glioma progression, with demonstrated oral efficacy to combat both processes.
Conclusions
By inhibiting both FGF-signaling and COX-mediated prostaglandin synthesis, DAPS efficiently breaks the vicious circle created by the reciprocal induction of FGF and prostaglandins, which probably sustains undesirable inflammation in many circumstances. Our findings define the enhancement of anti-inflammatory, anti-angiogenic and anti-tumoral activities by diacetyloxyl derivatization of the FGF inhibitor, dobesilate.
doi:10.1186/s12967-015-0413-4
PMCID: PMC4318172  PMID: 25638171
Angiogenesis; Cancer; Cyclooxygenase; Dobesilate; Fibroblast growth factor; Inflammation
13.  Personalization of cancer treatment using predictive simulation 
Background
The personalization of cancer treatments implies the reconsideration of a one-size-fits-all paradigm. This move has spawned increased use of next generation sequencing to understand mutations and copy number aberrations in cancer cells. Initial personalization successes have been primarily driven by drugs targeting one patient-specific oncogene (e.g., Gleevec, Xalkori, Herceptin). Unfortunately, most cancers include a multitude of aberrations, and the overall impact on cancer signaling and metabolic networks cannot be easily nullified by a single drug.
Methods
We used a novel predictive simulation approach to create an avatar of patient cancer cells using point mutations and copy number aberration data. Simulation avatars of myeloma patients were functionally screened using various molecularly targeted drugs both individually and in combination to identify drugs that are efficacious and synergistic. Repurposing of drugs that are FDA-approved or under clinical study with validated clinical safety and pharmacokinetic data can provide a rapid translational path to the clinic. High-risk multiple myeloma patients were modeled, and the simulation predictions were assessed ex vivo using patient cells.
Results
Here, we present an approach to address the key challenge of interpreting patient profiling genomic signatures into actionable clinical insights to make the personalization of cancer therapy a practical reality. Through the rational design of personalized treatments, our approach also targets multiple patient-relevant pathways to address the emergence of single therapy resistance. Our predictive platform identified drug regimens for four high-risk multiple myeloma patients. The predicted regimes were found to be effective in ex vivo analyses using patient cells.
Conclusions
These multiple validations confirm this approach and methodology for the use of big data to create personalized therapeutics using predictive simulation approaches.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-015-0399-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s12967-015-0399-y
PMCID: PMC4320499  PMID: 25638213
Multiple myeloma; Rational drug design; Personalized therapy
14.  Luteolin exerts a marked antitumor effect in cMet-overexpressing patient-derived tumor xenograft models of gastric cancer 
Background
Aberrated activation of cMet in gastric cancer contributes to tumor growth, angiogenesis and metastasis. cMet-overexpressing gastric cancer has a poor prognosis because of high tumor metastasis and limited therapeutic options. Luteolin is a common dietary flavonoid with antitumor properties. However, the antitumor effect of luteolin on cMet-overexpressing gastric cancer remain unclear.
Methods
Two cMet-overexpressing patient-derived human tumor xenograft (PDTX) models of gastric cancer were established, and treated with luteolin or vehicle to evaluate the antitumor effects of luteolin. Tumor specimens were subjected to H&E staining and immunohistochemistry. MKN45 and SGC7901 cells that show high cMet expression were treated with varying concentrations of luteolin and evaluated by western blot, cell viability, apoptosis, migration, and invasion assays.
Results
Luteolin inhibited the tumor growth in cMet-overexpressing PDTX models. Immunohistochemistry demonstrated that expression of cMet, MMP9 and Ki-67 were significantly down-regulated. Luteolin inhibited proliferation, promoted apoptosis and reduced the invasiveness of MKN45 and SGC7901 cells. Western blot revealed that luteolin promoted the activation of apoptosis-related proteins, caspase-3 and PARP-1, and down-regulated the invasion-associated protein, MMP9. Further studies demonstrated that luteolin decreased the expression and phosphorylation of cMet, and downstream phosphorylation of Akt and ERK. In addition, luteolin down-regulated phosphorylated Akt independently of cMet. Blocking Akt and/or ERK with the PI3K inhibitor, LY294002, or the ERK inhibitor, PD98059, induced down-regulation of MMP9 and up-regulation of cleaved caspase-3 and PARP-1, resembling the effects of luteolin.
Conclusions
Our findings ,for the first time, demonstrate that luteolin exerts marked antitumor effects in cMet-overexpressing PDTX models of gastric cancer, through a mechanism likely involving cMet/Akt/ERK signaling. These findings indicate that luteolin may act as a potential therapeutic option for cMet-overexpressing gastric cancer.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-015-0398-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s12967-015-0398-z
PMCID: PMC4320638  PMID: 25638174
Luteolin; cMet-overexpressing; Gastric cancer; Patient-derived tumor xenografts
15.  Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: proof of concept in rats 
Background
Rat adipose tissue-derived-mesenchymal stem cells (rAD-MSCs) have proven to be safe in experimental animal models of stroke. However, in order to use human AD-MSCs (hAD-MSCs) as a treatment for stroke patients, a proof of concept is needed. We analyzed whether the xenogeneic hAD-MSCs were as safe and effective as allogeneic rAD-MSCs in permanent Middle Cerebral Artery Occlusion (pMCAO) in rats.
Methods
Sprague–Dawley rats were randomly divided into three groups, which were intravenously injected with xenogeneic hAD-MSCs (2 × 106), allogeneic rAD-MSCs (2 × 106) or saline (control) at 30 min after pMCAO. Behavior, cell implantation, lesion size and cell death were evaluated. Brain markers such as GFAP (glial fibrillary acid protein), VEGF (vascular endothelial growth factor) and SYP (synaptophysin) and tumor formation were analyzed.
Results
Compared to controls, recovery was significantly better at 24 h and continued to be so at 14 d after IV administration of either hAD-MSCs or rAD-MSCs. No reduction in lesion size or migration/implantation of cells in the damaged brain were observed in the treatment groups. Nevertheless, cell death was significantly reduced with respect to the control group in both treatment groups. VEGF and SYP levels were significantly higher, while those of GFAP were lower in the treated groups. At three months, there was no tumor formation.
Conclusions
hAD-MSCs and rAD-MSCs were safe and without side effects or tumor formation. Both treatment groups showed equal efficacy in terms of functional recovery and decreased ischemic brain damage (cell death and glial scarring) and resulted in higher angiogenesis and synaptogenesis marker levels.
doi:10.1186/s12967-015-0406-3
PMCID: PMC4322805  PMID: 25637958
Allogeneic and xenogeneic AD-MSCs; Functional recovery; Safety; Stroke
16.  Pharmacokinetic model of unfractionated heparin during and after cardiopulmonary bypass in cardiac surgery 
Background
Unfractionated heparin (UFH) is widely used as a reversible anti-coagulant in cardiopulmonary bypass (CPB). However, the pharmacokinetic characteristics of UFH in CPB surgeries remain unknown because of the lack of means to directly determine plasma UFH concentrations. The aim of this study was to establish a pharmacokinetic model to predict plasma UFH concentrations at the end of CPB for optimal neutralization with protamine sulfate.
Methods
Forty-one patients undergoing CPB during cardiac surgery were enrolled in this observational clinical study of UFH pharmacokinetics. Patients received intravenous injections of UFH, and plasma anti-FIIa activity was measured with commercial anti-FIIa assay kits. A population pharmacokinetic model was established by using nonlinear mixed-effects modeling (NONMEM) software and validated by visual predictive check and Bootstrap analyses. Estimated parameters in the final model were used to simulate additional protamine administration after cardiac surgery in order to eliminate heparin rebound. Plans for postoperative protamine intravenous injections and infusions were quantitatively compared and evaluated during the simulation.
Results
A two-compartment pharmacokinetic model with first-order elimination provided the best fit. Subsequent simulation of postoperative protamine administration suggested that a lower-dose protamine infusion over 24 h may provide better elimination and prevent heparin rebound than bolus injection and other infusion regimens that have higher infusion rates and shorter duration.
Conclusion
A two-compartment model accurately reflects the pharmacokinetics of UFH in Chinese patients during CPB and can be used to explain postoperative heparin rebound after protamine neutralization. Simulations suggest a 24-h protamine infusion is more effective for heparin rebound prevention than a 6-h protamine infusion.
doi:10.1186/s12967-015-0404-5
PMCID: PMC4326208  PMID: 25638272
Cardiopulmonary bypass; Cardiac surgery; Pharmacokinetic model; Unfractionated heparin
17.  Decreased Cezanne expression is associated with the progression and poor prognosis in hepatocellular carcinoma 
Background
Deubiquitinases, such as CYLD, A20 and Cezanne, have emerged as negative regulators that balance the strength and duration of NF-κB signaling through feedback mechanisms. However, how these serial feedback loops are simultaneously disrupted in cancer remains unclear. The purpose of this study is to investigate the correlation of Cezanne expression with clinicopathological/prognostic value in hepatocellular carcinoma (HCC).
Methods
The expression levels of Cezanne and matrix metallopeptidase 9 (MMP-9) were assessed by immunohistochemistry in 230 HCC specimens. The correlation between expression of Cezanne and MMP-9, clinicopathological/prognostic value in hepatocellular carcinoma was examined.
Results
Cezanne reduction in HCC was significantly associated with larger tumor, satellite nodule, vascular invasion, TNM stage, BCLC stage and early recurrence. Kaplan-Meier analysis showed that Cezanne was a great predictive factor for overall survival (OS) and time to recurrence (TTR). The expression of Cezanne was decreased in TNM and BCLC stage-dependent manner. In addition, Cezanne reduction was associated with poor prognosis in patients subgroups stratified by tumor size, tumor differentiation, TNM stage and BCLC stage. Moreover, Cezanne was negatively associated with MMP-9 among 230 HCC samples. Patients who had Cezanne downregulation, in which cancer cells showed high invasiveness, had shorter TTR and poor OS. Furthermore, the coindex of Cezanne and preoperative serum AFP levels was significantly correlated with OS and TTR.
Conclusion
Cezanne has a pivotal role in tumor progression and prognosis, and may act as a potential prognostic biomarker for survival in HCC patients.
doi:10.1186/s12967-015-0396-1
PMCID: PMC4329219  PMID: 25638165
Hepatocellular carcinoma; Cezanne; MMP-9; Aggressiveness; Prognosis
18.  Activating PIK3CA mutations coexist with BRAF or NRAS mutations in a limited fraction of melanomas 
Background
Activated PI3K-AKT pathway may contribute to decrease sensitivity to inhibitors of key pathogenetic effectors (mutated BRAF, active NRAS or MEK) in melanoma. Functional alterations are deeply involved in PI3K-AKT activation, with a minimal role reported for mutations in PIK3CA, the catalytic subunit of the PI3K gene. We here assessed the prevalence of the coexistence of BRAF/NRAS and PIK3CA mutations in a series of melanoma samples.
Methods
A total of 245 tumor specimens (212 primary melanomas and 33 melanoma cell lines) was screened for mutations in BRAF, NRAS, and PIK3CA genes by automated direct sequencing.
Results
Overall, 110 (44.9%) samples carried mutations in BRAF, 26 (10.6%) in NRAS, and 24 (9.8%) in PIK3CA. All identified PIK3CA mutations have been reported to induce PI3K activation; those detected in cultured melanomas were investigated for their interference with the antiproliferative activity of the BRAF-mutant inhibitor vemurafenib. A reduced suppression in cell growth was observed in treated cells carrying both BRAF and PIK3CA mutations as compared with those presenting a mutated BRAF only. Among the analysed melanomas, 12/245 (4.9%) samples presented the coexistence of PIK3CA and BRAF/NRAS mutations.
Conclusions
Our study further suggests that PIK3CA mutations account for a small fraction of PI3K pathway activation and have a limited impact in interfering with the BRAF/NRAS-driven growth in melanoma.
doi:10.1186/s12967-015-0401-8
PMCID: PMC4312444  PMID: 25627962
Melanoma; Mutation analysis; PIK3CA gene; Resistance to BRAF/MEK inhibitors
19.  NADPH oxidase p47phox siRNA attenuates adventitial fibroblasts proliferation and migration in apoE(-/-) mouse 
Background
Reactive oxide species (ROS) derived from NADPH oxidases is involved in atherosclerosis. However, as a key component of NADPH oxidase, how p47phox regulates NADPH oxidases activity, ROS production and adventitial fibroblasts (AFs) function remains unclear.
Methods
p47phox in aortic arteries of apoE(-/-) mice fed with hyperlipid diet was detected by immunohistochemistry. NADPH oxidase activity, superoxide anion (O2−) generation and p47phox expression were analyzed in primary AFs treated by diphenyleneiodonium (DPI). The proliferation and migration of AFs were also analyzed.
Results
p47phox expression was low in the aortic adventitia but high in the site of intimal injury with continuous hyperlipidic diet. Compared to AFs from wild-type mice, AFs derived from apoE(-/-) mice exhibited elevated NADPH oxidase activity, O2− production and higher mRNA and protein levels of p47phox, correlated with increased capability of proliferation and migration. DPI inhibited NADPH oxidase activity and AFs proliferation and migration in a dose-dependent manner. In addition, siRNA mediated knockdown of p47phox attenuated the proliferation and migration of AFs derived from apoE(-/-) mice.
Conclusion
p47phox plays a critical role in the regulation of adventitial fibroblast proliferation and migration and may be a new therapeutic target for neointimal hyperplasia.
doi:10.1186/s12967-015-0407-2
PMCID: PMC4312606  PMID: 25628043
NADPH oxidase; p47phox; Adventitia fibroblasts; Atherosclerosis; ApoE(-/-)
20.  Interleukin-37 is increased in ankylosing spondylitis patients and associated with disease activity 
Background
Interleukin-37 (IL-37) has been known to play an immunosuppressive role in various inflammatory disorders, but whether it participates in the regulation of pathogenesis of ankylosing spondylitis (AS) has not been investigated. Here, we examined the serum levels of IL-37 and its clinical association in AS, and explored the anti-inflammatory effects of IL-37 on peripheral blood mononuclear cells (PBMCs) from AS patients.
Methods
The mRNA levels of IL-37, TNF-α, IL-6, IL-17, and IL-23 in PBMCs and their serum concentrations from 46 AS patients were examined by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunoassay (ELISA), respectively. The correlations between serum IL-37 levels with disease activity, laboratory values and pro-inflammatory cytokines in AS were analyzed by Spearman correlation test. PBMCs from 46 AS patients were stimulated with recombinant IL-37 protein, expressions of TNF-α, IL-6, IL-17 and IL-23 were determined by RT-PCR and ELISA.
Results
Compared to healthy controls (HC), AS patients and active AS patients showed higher levels of IL-37 in PBMCs and serum respectively. Strikingly, serum IL-37 levels were higher in AS patients with osteoporosis than those without. Serum levels of IL-37 were correlated with laboratory values as well as TNF-α, IL-6 and IL-17, but not IL-23 in patients with AS. The productions of pro-inflammatory cytokines such as TNF-α, IL-6, IL-17, IL-23 in PBMCs from AS patients were obviously attenuated after recombinant IL-37 stimulation, but not in the HC.
Conclusion
The higher levels of IL-37 were found in AS patients, which were correlated with disease activity and AS related pro-inflammatory cytokines. More importantly, IL-37 inhibits the expressions of the pro-inflammatory cytokines from PBMCs in AS patients, indicating the potential anti-inflammatory role of IL-37 in AS.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-015-0394-3) contains supplementary material, which is available to authorized users.
doi:10.1186/s12967-015-0394-3
PMCID: PMC4323018  PMID: 25627863
Interleukin-37; Ankylosing spondylitis; Peripheral blood mononuclear cells; Tumor necrosis factor-α; Interleukin-17; Interleukin-6; Interleukin-23
21.  ZBP-89 reduces histone deacetylase 3 by degrading IkappaB in the presence of Pin1 
Background
Histone deacetylase 3 (HDAC3) is overexpressed in cancers and its inhibition enhances anti-tumor chemotherapy. ZBP-89, a transcription factor, can induce pro-apoptotic Bak and reduce HDAC3 but the mechanism is unknown. Pin1, a molecular switch that determines the fate of phosphoproteins, is known to interact with HDAC3. The aim of this study was to investigate the mechanism how ZBP-89 downregulated HDAC3.
Methods
In this study, liver cells, Pin1-knockout Pin1−/− and Pin1 wild-typed Pin+/+ cells were used to explore how ZBP-89 reduced HDAC3. The overexpression of ZBP-89 was achieved by infecting cells with Ad-ZBP-89, an adenoviral construct containing ZBP-89 gene. The role of NF-κB was determined using CAY10576, MG132 and SN50, the former two being inhibitors of IκB degradation and SN50 being an inhibitor of p65/p50 translocation. A xenograft tumor model was used to confirm the in vitro data.
Results
ZBP-89 reduced HDAC3, and it could form a complex with IκB and induce IκB phosphorylation to inhibit IκB. Furthermore, ZBP-89-mediated HDAC3 reduction was suppressed by IκB degradation inhibitors CAY10576 and MG132 but not by p65/p50 translocation inhibitor SN50, indicating that IκB decrease rather than the elevated activity of NF-κB contributed to HDAC3 reduction. ZBP-89-mediated HDAC3 or IκB reduction was significantly less obvious in Pin1−/− cells compared with Pin1+/+ cells. In Ad-ZBP-89-infected Pin1+/+ cancer cells, Pin1 siRNA increased HDAC3 but decreased Bak, compared with cells without ZBP-89 infection. These findings indicate that Pin1 participates in ZBP-89-mediated HDAC3 downregulation and Bak upregulation. The cell culture result was confirmed by in vivo mouse tumor model experiments.
Conclusions
ZBP-89 attenuates HDAC3 by increasing IκB degradation. Such attenuation is independent of NF-κB activity but partially depends on Pin1. The novel pathway identified may help generate new anti-cancer strategy by targeting HDAC3 and its related molecules.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-015-0382-7) contains supplementary material, which is available to authorized users.
doi:10.1186/s12967-015-0382-7
PMCID: PMC4311446  PMID: 25623232
ZBP-89; HDAC3; Pin1; IκB; Hepatocellular carcinoma
22.  The CD14 C-260T single nucleotide polymorphism (SNP) modulates monocyte/macrophage activation in treated HIV-infected individuals 
Background
HIV-infected individuals have an increased risk of cardiovascular disease (CVD). T-allele carriers of the CD14 C-260T single-nucleotide polymorphism (SNP) have reported increased expression of the LPS-binding receptor, CD14 and inflammation in the general population. Our aim was to explore the relationship of this SNP with monocyte/macrophage activation and inflammation and its association with sub-clinical atherosclerosis in HIV-infected individuals.
Methods
Patients with no pre-existing CVD risk factors on suppressive antiretroviral therapy were recruited from University Malaya Medical Centre, Malaysia (n = 84). The CD14 C-260T and TLR4 SNPs, Asp299Gly and Thr399Ile were genotyped and soluble(s) CD14 and sCD163 and high-sensitivity C-reactive protein, hsCRP were measured in plasma. Subclinical atherosclerosis was assessed by measuring carotid intima media thickness (cIMT). The association between CD14 C-260T SNP carriage and cIMT was assessed in a multivariable quantile regression model where a p-value of <0.05 was considered significant.
Results
We found the CD14 C-260T T-allele in 56% of the cohort and evidence of subclinical atherosclerosis in 27%. TT genotype was associated with higher sCD163 (p = 0.009) but only marginally higher sCD14 (p = 0.209) and no difference in hsCRP (p = 0.296) compared to CC/CT. In multivariable analysis, only Framingham risk score was independently associated with higher cIMT while lower sCD163 was trending towards significance. No association was found in TT-genotype carriers and cIMT measurements.
Conclusion
The CD14 C-260T SNP was associated with increased monocyte activation but not systemic inflammation or cIMT in this HIV-infected cohort with low CVD risk profile.
doi:10.1186/s12967-015-0391-6
PMCID: PMC4311493  PMID: 25622527
HIV; Lipopolysaccharide; CD12 C-260T; Soluble CD14; Soluble CD163; Monocyte activation; C-reactive protein; Atherosclerosis; Carotid intima media thickness
23.  Employment of digital gene expression profiling to identify potential pathogenic and therapeutic targets of fulminant hepatic failure 
Background
The dysregulated cytokine metabolism and activity are crucial to the development of fulminant hepatic failure (FHF), and many different cytokines have been identified. However, the precise gene expression profile and their interactions association with FHF are yet to be further elucidated.
Methods
In this study, we detected the digital gene expression profile (DGEP) by high-throughput sequencing in normal and FHF mouse liver, and the candidate genes and potential targets for FHF therapy were verified. And the FHF mouse model was induced by D-Galactosamine (GalN)/lipopolysaccharide (LPS).
Results
Totally 12727 genes were detected, and 3551 differentially expressed genes (DEGs) were obtained from RNA-seq data in FHF mouse liver. In FHF mouse liver, many of those DEGs were identified as differentially expressed in metabolic process, biosynthetic process, response to stimulus and response to stress, etc. Similarly, pathway enrichment analysis in FHF mouse liver showed that many significantly DEGs were also enriched in metabolic pathways, apoptosis, chemokine signaling pathways, etc. Considering the important role of nuclear factor-kappa B (NF-κB) in metabolic regulation and delicate balance between cell survival and death, several DEGs involved in NF-κB pathway were selected for experimental validation. As compared to normal control, NF-κBp65 and its inhibitory protein IκBα were both significantly increased, and NF-κB targeted genes including tumor necrosis factor α(TNFα), inducible nitric oxide synthase (iNOS), interleukin-1β, chemokines CCL3 and CCL4 were also increased in hepatic tissues of FHF. In addition, after NF-κB was successfully pre-blocked, there were significant alteration of hepatic pathological damage and mortality of FHF mouse model.
Conclusions
This study provides the globe gene expression profile of FHF mouse liver, and demonstrates the possibility of NF-κB gene as a potential therapeutic target for FHF.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-015-0380-9) contains supplementary material, which is available to authorized users.
doi:10.1186/s12967-015-0380-9
PMCID: PMC4312436  PMID: 25623171
Fulminant hepatic failure; Differentially expressed genes; Nuclear factor-kappa B; Therapeutic target
24.  DNA methylation patterns in newborns exposed to tobacco in utero 
Background
Maternal smoking during pregnancy is a major risk factor for adverse health outcomes. The main objective of the study was to assess the impact of in utero tobacco exposure on DNA methylation in children born at term with appropriate weight at birth.
Methods
Twenty mother-newborn dyads, after uncomplicated pregnancies, in the absence of perinatal illness were included. All mothers were healthy with no cardiovascular risk factors, except for the associated risks among those mothers who smoked. Umbilical cord blood and maternal peripheral venous blood were collected and an epigenome-wide association study was performed using a 450 K epigenome-wide scan (Illumina Infinium HumanMethylation 450BeadChip) with adjustment to normalize the DNA methylation for data cell variability in whole blood.
Results
The maternal plasmatic cotinine levels ranged from 10.70-115.40 ng/ml in the exposed group to 0-0.59 ng/ml in the non-exposed group. After adjusting for multiple comparisons in 427102 probes, statistically significant differences for 31 CpG sites, associated to 25 genes were observed. There was a greater than expected proportion of statistically-significant loci located in CpG islands (Fisher’s exact test, p = 0.029) and of those CpG islands, 90.3% exhibit higher methylation levels in the exposed group. The most striking and significant CpG site, cg05727225, is located in the chromosome 11p15.4, within the adrenomedullin gene.
Conclusions
In utero tobacco exposure, even in the absence of fetal growth restriction, may alter the epigenome, contributing to global DNA hypomethylation. Therefore, DNA status can be used as a biomarker of prenatal insults. Considering the possibility to reverse epigenetic modifications, a window of opportunity exists to change the programmed chronic disease.
doi:10.1186/s12967-015-0384-5
PMCID: PMC4312439  PMID: 25623364
Tobacco; Newborns; DNA methylation; Adrenomedullin gene
25.  Inhibition of human diffuse large B-cell lymphoma growth by JC polyomavirus-like particles delivering a suicide gene 
Background
Diffuse large B-cell lymphoma (DLBCL) is one of the most common types of aggressive B-cell non-Hodgkin lymphoma. About one-third of patients are either refractory to the treatment or experience relapse afterwards, pointing to the necessity of developing other effective therapies for DLBCL. Human B-lymphocytes are susceptible to JC polyomavirus (JCPyV) infection, and JCPyV virus-like particles (VLPs) can effectively deliver exogenous genes to susceptible cells for expression, suggesting the feasibility of using JCPyV VLPs as gene therapy vectors for DLBCL.
Methods
The JCPyV VLPs packaged with a GFP reporter gene were used to infect human DLBCL cells for gene delivery assay. Furthermore, we packaged JCPyV VLPs with a suicide gene encoding thymidine kinase (TK) to inhibit the growth of DLBCL in vitro and in vivo.
Results
Here, we show that JCPyV VLPs effectively entered human germinal center B-cell-like (GCB-like) DLBCL and activated B-cell-like (ABC-like) DLBCL and expressed the packaged reporter gene in vitro. As measured by the MTT assay, treatment with tk-VLPs in combination with gancyclovir (GCV) reduced the viability of DLBCL cells by 60%. In the xenograft mouse model, injection of tk-VLPs through the tail vein in combination with GCV administration resulted in a potent 80% inhibition of DLBCL tumor nodule growth.
Conclusions
Our results demonstrate the effectiveness of JCPyV VLPs as gene therapy vectors for human DLBCL and provide a potential new strategy for the treatment of DLBCL.
doi:10.1186/s12967-015-0389-0
PMCID: PMC4312600  PMID: 25623859
Diffuse large B-cell lymphoma; Gene therapy; JCPyV VLPs; Suicide gene; HSV-TK/GCV

Results 1-25 (2189)